結果

問題 No.1300 Sum of Inversions
ユーザー first_vilfirst_vil
提出日時 2020-11-27 21:41:14
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 538 ms / 2,000 ms
コード長 6,883 bytes
コンパイル時間 2,698 ms
コンパイル使用メモリ 210,888 KB
最終ジャッジ日時 2025-01-16 06:48:46
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using VI = vector<int>;
using VL = vector<ll>;
using VS = vector<string>;
template<class T> using PQ = priority_queue<T, vector<T>, greater<T>>;
#define FOR(i,a,n) for(int i=(a);i<(n);++i)
#define eFOR(i,a,n) for(int i=(a);i<=(n);++i)
#define rFOR(i,a,n) for(int i=(n)-1;i>=(a);--i)
#define erFOR(i,a,n) for(int i=(n);i>=(a);--i)
#define SORT(a) sort(a.begin(),a.end())
#define rSORT(a) sort(a.rbegin(),a.rend())
#define fSORT(a,f) sort(a.begin(),a.end(),f)
#define all(a) a.begin(),a.end()
#define out(y,x) ((y)<0||h<=(y)||(x)<0||w<=(x))
#define tp(a,i) get<i>(a)
#ifdef _DEBUG
#define line cout << "-----------------------------\n"
#define stop system("pause")
#endif
constexpr ll INF = 1000000000;
constexpr ll LLINF = 1LL << 60;
constexpr ll mod = 1000000007;
constexpr ll MOD = 998244353;
constexpr ld eps = 1e-10;
constexpr ld pi = 3.1415926535897932;
template<class T>inline bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; }return false; }
template<class T>inline bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; }return false; }
inline void init() { cin.tie(nullptr); cout.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); }
template<class T>inline istream& operator>>(istream& is, vector<T>& v) { for (auto& a : v)is >> a; return is; }
template<class T, class U>inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template<class T>inline vector<T> vec(size_t a) { return vector<T>(a); }
template<class T>inline vector<T> defvec(T def, size_t a) { return vector<T>(a, def); }
template<class T, class... Ts>inline auto vec(size_t a, Ts... ts) { return vector<decltype(vec<T>(ts...))>(a, vec<T>(ts...)); }
template<class T, class... Ts>inline auto defvec(T def, size_t a, Ts... ts) { return vector<decltype(defvec<T>(def, ts...))>(a, defvec<T>(def, ts
    ...)); }
template<class T>inline void print(const T& a) { cout << a << "\n"; }
template<class T, class... Ts>inline void print(const T& a, const Ts&... ts) { cout << a << " "; print(ts...); }
template<class T>inline void print(const vector<T>& v) { for (int i = 0; i < v.size(); ++i)cout << v[i] << (i == v.size() - 1 ? "\n" : " "); }
template<class T>inline void print(const vector<vector<T>>& v) { for (auto& a : v)print(a); }
inline string reversed(const string& s) { string t = s; reverse(all(t)); return t; }
template<class T>inline T sum(const vector<T>& a, int l, int r) { return a[r] - (l == 0 ? 0 : a[l - 1]); }
template<class T>inline void END(T s) { print(s); exit(0); }
void END() { exit(0); }
template<int modulo> struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(ll y) : x(y >= 0 ? y % modulo : (modulo - (-y) % modulo) % modulo) {}
ModInt& operator+=(const ModInt& p) {
if ((x += p.x) >= modulo) x -= modulo;
return *this;
}
ModInt& operator-=(const ModInt& p) {
if ((x += modulo - p.x) >= modulo) x -= modulo;
return *this;
}
ModInt& operator*=(const ModInt& p) {
x = (int)(1LL * x * p.x % modulo);
return *this;
}
ModInt& operator/=(const ModInt& p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt& p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt& p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt& p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt& p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt& p) const { return x == p.x; }
bool operator!=(const ModInt& p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = modulo, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
ModInt pow(ll e) {
ll a = 1, p = x;
while (e > 0) {
if (e % 2 == 0) {
p = (p * p) % modulo;
e /= 2;
}
else {
a = (a * p) % modulo;
e--;
}
}
return ModInt(a);
}
friend ostream& operator<<(ostream& os, const ModInt<modulo>& p) {
return os << p.x;
}
friend istream& operator>>(istream& is, ModInt<modulo>& a) {
ll x;
is >> x;
a = ModInt<modulo>(x);
return (is);
}
};
using modint = ModInt<MOD>;
template<class Op> class SegmentTree {
using T = typename Op::T;
int len, n;
vector<T> dat;
public:
SegmentTree(const int _n) : n(_n) {
for (len = 1; len < n; len <<= 1);
dat.resize(len << 1, Op::unit);
}
SegmentTree(const vector<T>& v) : n(v.size()) {
for (len = 1; len < n; len <<= 1);
dat.resize(len << 1, Op::unit);
for (int i = 0; i < n; ++i)dat[i + len] = v[i];
for (int i = len - 1; 0 < i; --i)
dat[i] = Op::merge(dat[i << 1], dat[i << 1 | 1]);
}
inline void update(int idx, const T a) {
idx += len;
dat[idx] = Op::update(dat[idx], a);
for (idx >>= 1; 0 < idx; idx >>= 1)
dat[idx] = Op::merge(dat[idx << 1], dat[idx << 1 | 1]);
}
inline T value(int l, int r) {
T vl = Op::unit, vr = Op::unit;
for (l += len, r += len; l < r; l >>= 1, r >>= 1) {
if (l & 1)vl = Op::merge(vl, dat[l++]);
if (r & 1)vr = Op::merge(dat[--r], vr);
}
return Op::merge(vl, vr);
}
inline T operator[](int idx) { return dat[idx + len]; }
};
template<class Type> struct node {
using T = Type;
inline static T unit = 0;
inline static T merge(T vl, T vr) { return vl + vr; }
inline static T update(T vl, T vr) { return vl + vr; }
};
int main() {
init();
int n; cin >> n;
map<int, int> m;
VI a(n);
FOR(i, 0, n) {
cin >> a[i];
m[a[i]];
}
int k = m.size();
VI za(k);
{
int i = 0;
for (auto it = m.begin(); it != m.end(); ++it) {
it->second = i;
za[i++] = it->first;
}
}
VL s(k);
VI t(k);
FOR(i, 0, n) {
s[m[a[i]]] += a[i];
++t[m[a[i]]];
}
SegmentTree<node<ll>> l(k), r(s);
SegmentTree<node<int>> l_cnt(k), r_cnt(t);
modint ans = 0;
FOR(i, 0, n) {
int p = m[a[i]];
r.update(p, -a[i]);
r_cnt.update(p, -1);
ans += l.value(p + 1, k) % MOD * r_cnt.value(0, p);
ans += l_cnt.value(p + 1, k) * (r.value(0, p) % MOD);
ans += a[i] % MOD * l_cnt.value(p + 1, k) % MOD * r_cnt.value(0, p);
l.update(p, a[i]);
l_cnt.update(p, 1);
}
print(ans);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0