結果
問題 | No.1300 Sum of Inversions |
ユーザー | 👑 emthrm |
提出日時 | 2020-11-27 21:44:48 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 223 ms / 2,000 ms |
コード長 | 6,088 bytes |
コンパイル時間 | 2,625 ms |
コンパイル使用メモリ | 215,008 KB |
実行使用メモリ | 7,936 KB |
最終ジャッジ日時 | 2024-07-26 12:06:56 |
合計ジャッジ時間 | 8,860 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 170 ms
6,944 KB |
testcase_04 | AC | 156 ms
6,944 KB |
testcase_05 | AC | 128 ms
6,940 KB |
testcase_06 | AC | 190 ms
7,296 KB |
testcase_07 | AC | 181 ms
7,168 KB |
testcase_08 | AC | 202 ms
7,552 KB |
testcase_09 | AC | 205 ms
7,424 KB |
testcase_10 | AC | 100 ms
6,944 KB |
testcase_11 | AC | 104 ms
6,944 KB |
testcase_12 | AC | 164 ms
6,944 KB |
testcase_13 | AC | 164 ms
6,944 KB |
testcase_14 | AC | 223 ms
7,808 KB |
testcase_15 | AC | 206 ms
7,424 KB |
testcase_16 | AC | 164 ms
6,944 KB |
testcase_17 | AC | 98 ms
6,940 KB |
testcase_18 | AC | 123 ms
6,940 KB |
testcase_19 | AC | 139 ms
6,940 KB |
testcase_20 | AC | 151 ms
6,940 KB |
testcase_21 | AC | 141 ms
6,940 KB |
testcase_22 | AC | 129 ms
6,940 KB |
testcase_23 | AC | 183 ms
7,168 KB |
testcase_24 | AC | 135 ms
6,944 KB |
testcase_25 | AC | 106 ms
6,940 KB |
testcase_26 | AC | 109 ms
6,944 KB |
testcase_27 | AC | 123 ms
6,940 KB |
testcase_28 | AC | 211 ms
7,552 KB |
testcase_29 | AC | 137 ms
6,944 KB |
testcase_30 | AC | 208 ms
7,424 KB |
testcase_31 | AC | 124 ms
6,940 KB |
testcase_32 | AC | 140 ms
6,944 KB |
testcase_33 | AC | 24 ms
6,944 KB |
testcase_34 | AC | 38 ms
6,940 KB |
testcase_35 | AC | 125 ms
7,936 KB |
testcase_36 | AC | 128 ms
7,936 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int MOD> struct MInt { unsigned val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % MOD : x % MOD + MOD) {} static int get_mod() { return MOD; } static void set_mod(int divisor) { assert(divisor == MOD); } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= MOD) val -= MOD; return *this; } MInt &operator-=(const MInt &x) { if((val += MOD - x.val) >= MOD) val -= MOD; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % MOD; return *this; } MInt &operator/=(const MInt &x) { // assert(std::__gcd(static_cast<int>(x.val), MOD) == 1); unsigned a = x.val, b = MOD; int u = 1, v = 0; while (b) { unsigned tmp = a / b; std::swap(a -= tmp * b, b); std::swap(u -= tmp * v, v); } return *this *= u; } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == MOD) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? MOD : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? MOD - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int MOD> MInt<MOD> abs(const MInt<MOD> &x) { return x; } } template <int MOD> struct Combinatorics { using ModInt = MInt<MOD>; int val; // "val!" and "mod" must be disjoint. std::vector<ModInt> fact, fact_inv, inv; Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) { fact[0] = 1; for (int i = 1; i <= val; ++i) fact[i] = fact[i - 1] * i; fact_inv[val] = ModInt(1) / fact[val]; for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i; for (int i = 1; i <= val; ++i) inv[i] = fact[i - 1] * fact_inv[i]; } ModInt nCk(int n, int k) const { if (n < 0 || n < k || k < 0) return 0; assert(n <= val && k <= val); return fact[n] * fact_inv[k] * fact_inv[n - k]; } ModInt nPk(int n, int k) const { if (n < 0 || n < k || k < 0) return 0; assert(n <= val); return fact[n] * fact_inv[n - k]; } ModInt nHk(int n, int k) const { if (n < 0 || k < 0) return 0; return k == 0 ? 1 : nCk(n + k - 1, k); } }; using ModInt = MInt<MOD>; template <typename Abelian> struct BIT { BIT(int n, const Abelian UNITY = 0) : n(n), UNITY(UNITY), dat(n, UNITY) {} void add(int idx, Abelian val) { while (idx < n) { dat[idx] += val; idx |= idx + 1; } } Abelian sum(int idx) const { Abelian res = UNITY; --idx; while (idx >= 0) { res += dat[idx]; idx = (idx & (idx + 1)) - 1; } return res; } Abelian sum(int left, int right) const { return left < right ? sum(right) - sum(left) : UNITY; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } int lower_bound(Abelian val) const { if (val <= UNITY) return 0; int res = 0, exponent = 1; while (exponent <= n) exponent <<= 1; for (int mask = exponent >> 1; mask > 0; mask >>= 1) { if (res + mask - 1 < n && dat[res + mask - 1] < val) { val -= dat[res + mask - 1]; res += mask; } } return res; } private: int n; const Abelian UNITY; std::vector<Abelian> dat; }; int main() { int n; cin >> n; vector<int> a(n); REP(i, n) cin >> a[i]; vector<int> b(a); sort(ALL(b)); b.erase(unique(ALL(b)), b.end()); int m = b.size(); BIT<ModInt> bit1(m), bit3(m), bit4(m); BIT<int> bit2(m); REP(i, n) { int idx = lower_bound(ALL(b), a[i]) - b.begin(); bit3.add(idx, bit1.sum(idx + 1, m)); int cnt = bit2.sum(idx + 1, m); bit3.add(idx, 1LL * a[i] * cnt); bit4.add(idx, cnt); bit1.add(idx, a[i]); bit2.add(idx, 1); } ModInt ans = 0; for (int i = n - 1; i >= 0; --i) { int idx = lower_bound(ALL(b), a[i]) - b.begin(); bit1.add(idx, -a[i]); bit2.add(idx, -1); bit3.add(idx, -bit1.sum(idx + 1, m)); int cnt = bit2.sum(idx + 1, m); bit3.add(idx, -1LL * a[i] * cnt); bit4.add(idx, -cnt); ans += bit3.sum(idx + 1, m) + bit4.sum(idx + 1, m) * a[i]; } cout << ans << '\n'; return 0; }