結果

問題 No.1303 Inconvenient Kingdom
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-11-27 21:45:47
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 20,067 bytes
コンパイル時間 4,117 ms
コンパイル使用メモリ 326,792 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-26 12:08:42
合計ジャッジ時間 5,394 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 3 ms
6,940 KB
testcase_07 AC 4 ms
6,944 KB
testcase_08 AC 4 ms
6,944 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 AC 5 ms
6,940 KB
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 4 ms
6,944 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 AC 3 ms
6,944 KB
testcase_27 WA -
testcase_28 WA -
testcase_29 AC 2 ms
6,940 KB
testcase_30 WA -
testcase_31 AC 2 ms
6,940 KB
testcase_32 WA -
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 2 ms
6,940 KB
testcase_36 WA -
testcase_37 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2020-11-27 21:45:43
 */

#pragma region kyopro_template
#define Nyaan_template
#include <immintrin.h>
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define inc(...)    \
  char __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define die(...)      \
  do {                \
    out(__VA_ARGS__); \
    return;           \
  } while (0)
using namespace std;
using ll = long long;
template <class T>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << " ";
  out(u...);
}

#ifdef NyaanDebug
#define trc(...)                   \
  do {                             \
    cerr << #__VA_ARGS__ << " = "; \
    dbg_out(__VA_ARGS__);          \
  } while (0)
#define trca(v, N)       \
  do {                   \
    cerr << #v << " = "; \
    array_out(v, N);     \
  } while (0)
#define trcc(v)                             \
  do {                                      \
    cerr << #v << " = {";                   \
    each(x, v) { cerr << " " << x << ","; } \
    cerr << "}" << endl;                    \
  } while (0)
template <typename T>
void _cout(const T &c) {
  cerr << c;
}
void _cout(const int &c) {
  if (c == 1001001001)
    cerr << "inf";
  else if (c == -1001001001)
    cerr << "-inf";
  else
    cerr << c;
}
void _cout(const unsigned int &c) {
  if (c == 1001001001)
    cerr << "inf";
  else
    cerr << c;
}
void _cout(const long long &c) {
  if (c == 1001001001 || c == (1LL << 61) - 1)
    cerr << "inf";
  else if (c == -1001001001 || c == -((1LL << 61) - 1))
    cerr << "-inf";
  else
    cerr << c;
}
void _cout(const unsigned long long &c) {
  if (c == 1001001001 || c == (1LL << 61) - 1)
    cerr << "inf";
  else
    cerr << c;
}
template <typename T, typename U>
void _cout(const pair<T, U> &p) {
  cerr << "{ ";
  _cout(p.fi);
  cerr << ", ";
  _cout(p.se);
  cerr << " } ";
}
template <typename T>
void _cout(const vector<T> &v) {
  int s = v.size();
  cerr << "{ ";
  for (int i = 0; i < s; i++) {
    cerr << (i ? ", " : "");
    _cout(v[i]);
  }
  cerr << " } ";
}
template <typename T>
void _cout(const vector<vector<T>> &v) {
  cerr << "[ ";
  for (const auto &x : v) {
    cerr << endl;
    _cout(x);
    cerr << ", ";
  }
  cerr << endl << " ] ";
}
void dbg_out() { cerr << endl; }
template <typename T, class... U>
void dbg_out(const T &t, const U &... u) {
  _cout(t);
  if (sizeof...(u)) cerr << ", ";
  dbg_out(u...);
}
template <typename T>
void array_out(const T &v, int s) {
  cerr << "{ ";
  for (int i = 0; i < s; i++) {
    cerr << (i ? ", " : "");
    _cout(v[i]);
  }
  cerr << " } " << endl;
}
template <typename T>
void array_out(const T &v, int H, int W) {
  cerr << "[ ";
  for (int i = 0; i < H; i++) {
    cerr << (i ? ", " : "");
    array_out(v[i], W);
  }
  cerr << " ] " << endl;
}
#else
#define trc(...)
#define trca(...)
#define trcc(...)
#endif

inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
  a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
  a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int btw(T a, T x, T b) {
  return a <= x && x < b;
}
template <typename T, typename U>
T ceil(T a, U b) {
  return (a + b - 1) / b;
}
constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  while (n) {
    if (n & 1) ret *= x;
    x *= x;
    n >>= 1;
  }
  return ret;
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
  vector<T> ret(v.size() + 1);
  for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}
template <typename T = int>
vector<T> mkiota(int N) {
  vector<T> ret(N);
  iota(begin(ret), end(ret), 0);
  return ret;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
  vector<int> inv(v.size());
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

void solve();
int main() { solve(); }

#pragma endregion
using namespace std;

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
using mint = LazyMontgomeryModInt<998244353>;
using vm = vector<mint>;
using vvm = vector<vm>;
using namespace std;

template <typename T>
struct Binomial {
  vector<T> fac_, finv_, inv_;
  Binomial(int MAX = 0) : fac_(MAX + 10), finv_(MAX + 10), inv_(MAX + 10) {
    assert(T::get_mod() != 0);
    MAX += 9;
    fac_[0] = finv_[0] = inv_[0] = 1;
    for (int i = 1; i <= MAX; i++) fac_[i] = fac_[i - 1] * i;
    finv_[MAX] = fac_[MAX].inverse();
    for (int i = MAX - 1; i > 0; i--) finv_[i] = finv_[i + 1] * (i + 1);
    for (int i = 1; i <= MAX; i++) inv_[i] = finv_[i] * fac_[i - 1];
  }

  void extend() {
    int n = fac_.size();
    T fac = fac_.back() * n;
    T inv = (-inv_[T::get_mod() % n]) * (T::get_mod() / n);
    T finv = finv_.back() * inv;
    fac_.push_back(fac);
    finv_.push_back(finv);
    inv_.push_back(inv);
  }

  T fac(int i) {
    while (i >= (int)fac_.size()) extend();
    return fac_[i];
  }

  T finv(int i) {
    while (i >= (int)finv_.size()) extend();
    return finv_[i];
  }

  T inv(int i) {
    while (i >= (int)inv_.size()) extend();
    return inv_[i];
  }

  T C(int n, int r) {
    if (n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  T C_naive(int n, int r) {
    if (n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

Binomial<mint> C;

using namespace std;

struct UnionFind {
  vector<int> data;
  UnionFind(int N) : data(N, -1) {}

  int find(int k) { return data[k] < 0 ? k : data[k] = find(data[k]); }

  int unite(int x, int y) {
    if ((x = find(x)) == (y = find(y))) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    return true;
  }

  // f ... merge function
  template<typename F>
  int unite(int x, int y,const F &f) {
    if ((x = find(x)) == (y = find(y))) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    f(x, y);
    return true;
  }

  int size(int k) { return -data[find(k)]; }

  int same(int x, int y) { return find(x) == find(y); }
};

/**
 * @brief Union Find(Disjoint Set Union)
 * @docs docs/data-structure/union-find.md
 */

using namespace std;

using namespace std;

template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].eb(x, y, c);
    if (!is_directed) g[y].eb(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}
// LowLink ... enumerate bridge and articulation point
// bridge ... 橋 articulation point ... 関節点
template <typename G>
struct LowLink {
  int N;
  const G &g;
  vector<int> ord, low, articulation;
  vector<pair<int, int> > bridge;

  LowLink(const G &g) : g(g) {
    N = g.size();
    ord.resize(N, -1);
    low.resize(N, -1);
    int k = 0;
    for (int i = 0; i < N; i++)
      if (!(~ord[i])) k = dfs(i, k, -1);
  }

  int dfs(int idx, int k, int par) {
    low[idx] = (ord[idx] = k++);
    int cnt = 0;
    bool is_arti = false, flg = false;
    for (auto &to : g[idx]) {
      if (ord[to] == -1) {
        cnt++;
        k = dfs(to, k, idx);
        low[idx] = min(low[idx], low[to]);
        is_arti |= (par != -1) && (low[to] >= ord[idx]);
        if (ord[idx] < low[to]) {
          bridge.emplace_back(minmax(idx, (int)to));
        }
      } else if (to != par || exchange(flg, true)) {
        low[idx] = min(low[idx], ord[to]);
      }
    }
    is_arti |= par == -1 && cnt > 1;
    if (is_arti) articulation.push_back(idx);
    return k;
  }
};
using namespace std;

template <class T>
struct Matrix {
  vector<vector<T> > A;

  Matrix() {}

  Matrix(int n, int m) : A(n, vector<T>(m, 0)) {}

  Matrix(int n) : A(n, vector<T>(n, 0)){};

  int height() const { return (A.size()); }

  int width() const { return (A[0].size()); }

  inline const vector<T> &operator[](int k) const { return (A.at(k)); }

  inline vector<T> &operator[](int k) { return (A.at(k)); }

  static Matrix I(int n) {
    Matrix mat(n);
    for (int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    int n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    int n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    int n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector<vector<T> > C(n, vector<T>(m, 0));
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++)
        for (int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while (k > 0) {
      if (k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

  Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

  Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

  Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    int n = p.height(), m = p.width();
    for (int i = 0; i < n; i++) {
      os << "[";
      for (int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }

  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for (int i = 0; i < width(); i++) {
      int idx = -1;
      for (int j = i; j < width(); j++) {
        if (B[j][i] != 0) idx = j;
      }
      if (idx == -1) return (0);
      if (i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for (int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for (int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for (int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

int a[111][111];

mint calc(vi v) {
  if (sz(v) == 1) return 1;
  Matrix<mint> m(sz(v) - 1);
  rep(i, sz(v) - 1) rep(j, sz(v)) {
    if (i == j) continue;
    if (a[v[i]][v[j]] == 0) continue;
    if (j != sz(v) - 1) m[i][j] -= 1;
    m[i][i] += 1;
  }
  return m.determinant();
}

void solve() {
  ini(N, M);
  UnionFind uf(N);
  rep(i, M) {
    ini(u, v);
    --u, --v;
    a[u][v] = a[v][u] = 1;
    uf.unite(u, v);
  }

  using P = pair<mint, int>;
  vvi memo(N);
  rep(i, N) memo[uf.find(i)].push_back(i);
  V<P> v;
  rep(i, N) {
    if (uf.find(i) == i) v.emplace_back(calc(memo[i]), sz(memo[i]));
  }

  if (sz(v) == 1) {
    out(0);
    // 橋を検出する
    // 橋を取り除いてうくをする
    vvi g(N);
    rep(i, N) rep(j, N) if (a[i][j]) g[i].pb(j);

    trc(g);
    mint ans = v[0].first;
    LowLink<vvi> low(g);
    trc(low.bridge);
    each(e, low.bridge) {
      trc(e);
      int i = e.first, j = e.second;
      vi vis(N);
      auto dfs = [&](auto rc, int c)->void {
        trc(c);
        vis[c] = 1;
        each(d, g[c]) {
          trc(c,d);
          if (d == j) continue;
          if (vis[d]) continue;
          vis[d] = 1;
          rc(rc, d);
        }
      };
      dfs(dfs, i);
      int sm = accumulate(all(vis), 0);
      // sm個 / N-sm個に分かれてる
      ans += mint(sm * (N - sm) - 1);
    }
    out(ans);
    return;
  }

  sort(all(v), [](P a, P b) { return a.second > b.second; });
  int n1 = v[0].second, n2 = v[1].second;
  trc(v);

  ll h = -n1 * n2 * 2;
  mint ans = 0;
  rep(j, sz(v)) rep(i, j) {
    h += v[i].second * v[j].second * 2;
    if (v[i].second == n1 and v[j].second == n2) {
      ans += v[i].first * v[j].first * v[i].second * v[j].second;
    }
  }

  out(h);
  out(ans);
}
0