結果
問題 | No.1300 Sum of Inversions |
ユーザー | tokusakurai |
提出日時 | 2020-11-27 21:50:01 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 306 ms / 2,000 ms |
コード長 | 4,730 bytes |
コンパイル時間 | 3,866 ms |
コンパイル使用メモリ | 211,932 KB |
最終ジャッジ日時 | 2025-01-16 06:56:27 |
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for(int i = 0; i < n; i++) #define rep2(i, x, n) for(int i = x; i <= n; i++) #define rep3(i, x, n) for(int i = x; i >= n; i--) #define each(e, v) for(auto &e: v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; //const int MOD = 1000000007; const int MOD = 998244353; const int inf = (1<<30)-1; const ll INF = (1LL<<60)-1; template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;}; template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;}; struct io_setup{ io_setup(){ ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; template<int mod> struct Mod_Int{ ll x; Mod_Int() : x(0) {} Mod_Int(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} Mod_Int &operator += (const Mod_Int &p){ x = (x + p.x) % mod; return *this; } Mod_Int &operator -= (const Mod_Int &p){ x = (x + mod - p.x) % mod; return *this; } Mod_Int &operator *= (const Mod_Int &p){ x = (x * p.x) % mod; return *this; } Mod_Int &operator /= (const Mod_Int &p){ *this *= p.inverse(); return *this; } Mod_Int &operator ++ () {return *this += Mod_Int(1);} Mod_Int operator ++ (int){ Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator -- () {return *this -= Mod_Int(1);} Mod_Int operator -- (int){ Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator - () const {return Mod_Int(-x);} Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;} Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;} Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;} Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;} bool operator == (const Mod_Int &p) const {return x == p.x;} bool operator != (const Mod_Int &p) const {return x != p.x;} Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod-2); } Mod_Int pow(ll k) const{ Mod_Int now = *this, ret = 1; while(k){ if(k&1) ret *= now; now *= now, k >>= 1; } return ret; } friend ostream &operator << (ostream &os, const Mod_Int &p){ return os << p.x; } friend istream &operator >> (istream &is, Mod_Int &p){ ll a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; template<typename T> struct Binary_Indexed_Tree{ vector<T> bit; const int n; Binary_Indexed_Tree(const vector<T> &v) : n(sz(v)){ bit.resize(n+1); copy(all(v), bit.begin()+1); for(int a = 2; a <= n; a <<= 1){ for(int b = a; b <= n; b += a){ bit[b] += bit[b-a/2]; } } } void add(int i, const T &x){ for(i++; i <= n; i += (i & -i)) bit[i] += x; } void change(int i, const T&x){ add(i, x-query(i, i+1)); } T sum(int i) const{ T ret = 0; for(; i > 0; i -= (i & -i)) ret += bit[i]; return ret; } T query(int l, int r) const{ return sum(r) - sum(l); } T operator [] (int i) const {return query(i, i+1);} int lower_bound(T x) const{ int ret = 0; for(int k = 31-__builtin_clz(n); k >= 0; k--){ if(ret+(1<<k) <= n && bit[ret+(1<<k)] < x) x -= bit[ret += (1<<k)]; } return ret; } int upper_bound(T x) const {return lower_bound(x+1);} }; int main(){ int N; cin >> N; vector<int> A(N); vector<pii> p; rep(i, N){ cin >> A[i]; p.eb(A[i], i); } sort(all(p)); vector<mint> nl(N), sl(N), nr(N), sr(N); vector<mint> v(N, 0); Binary_Indexed_Tree<mint> b1(v), b2(v), b3(v), b4(v); rep(i, N){ auto [j, k] = p[i]; b1.add(k, 1), b2.add(k, j); nr[k] = b1.query(k+1, N), sr[k] = b2.query(k+1, N); } sort(rall(p)); rep(i, N){ auto [j, k] = p[i]; b3.add(k, 1), b4.add(k, j); nl[k] = b3.query(0, k), sl[k] = b4.query(0, k); } mint ans = 0; rep(i, N){ ans += nl[i]*nr[i]*A[i]; ans += nl[i]*sr[i]+nr[i]*sl[i]; } cout << ans << '\n'; }