結果
問題 | No.1300 Sum of Inversions |
ユーザー | masayoshi361 |
提出日時 | 2020-11-27 21:58:04 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,729 ms / 2,000 ms |
コード長 | 20,372 bytes |
コンパイル時間 | 2,924 ms |
コンパイル使用メモリ | 208,676 KB |
実行使用メモリ | 31,120 KB |
最終ジャッジ日時 | 2024-07-26 12:34:47 |
合計ジャッジ時間 | 42,859 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1,285 ms
30,384 KB |
testcase_04 | AC | 1,206 ms
30,328 KB |
testcase_05 | AC | 978 ms
17,588 KB |
testcase_06 | AC | 1,457 ms
30,600 KB |
testcase_07 | AC | 1,367 ms
30,572 KB |
testcase_08 | AC | 1,532 ms
30,800 KB |
testcase_09 | AC | 1,626 ms
30,836 KB |
testcase_10 | AC | 785 ms
17,300 KB |
testcase_11 | AC | 808 ms
17,308 KB |
testcase_12 | AC | 1,260 ms
30,284 KB |
testcase_13 | AC | 1,231 ms
30,280 KB |
testcase_14 | AC | 1,729 ms
31,024 KB |
testcase_15 | AC | 1,526 ms
30,820 KB |
testcase_16 | AC | 1,311 ms
30,396 KB |
testcase_17 | AC | 756 ms
17,268 KB |
testcase_18 | AC | 921 ms
17,508 KB |
testcase_19 | AC | 1,131 ms
30,048 KB |
testcase_20 | AC | 1,129 ms
30,104 KB |
testcase_21 | AC | 1,147 ms
30,096 KB |
testcase_22 | AC | 972 ms
17,584 KB |
testcase_23 | AC | 1,396 ms
30,636 KB |
testcase_24 | AC | 1,022 ms
17,744 KB |
testcase_25 | AC | 842 ms
17,480 KB |
testcase_26 | AC | 846 ms
17,336 KB |
testcase_27 | AC | 934 ms
17,560 KB |
testcase_28 | AC | 1,598 ms
30,996 KB |
testcase_29 | AC | 1,074 ms
30,148 KB |
testcase_30 | AC | 1,496 ms
30,824 KB |
testcase_31 | AC | 987 ms
17,596 KB |
testcase_32 | AC | 1,008 ms
17,760 KB |
testcase_33 | AC | 469 ms
31,120 KB |
testcase_34 | AC | 619 ms
31,100 KB |
testcase_35 | AC | 977 ms
30,980 KB |
testcase_36 | AC | 987 ms
31,104 KB |
ソースコード
/* #region header */ #ifdef LOCAL #include "cxx-prettyprint-master/prettyprint.hpp" #define debug(x) cout << x << endl #else #define debug(...) 42 #endif #pragma GCC optimize("Ofast") #include <bits/stdc++.h> using namespace std; // types using ll = long long; using ull = unsigned long long; using ld = long double; typedef pair<ll, ll> Pl; typedef pair<int, int> Pi; typedef vector<ll> vl; typedef vector<int> vi; typedef vector<char> vc; template <typename T> using mat = vector<vector<T>>; typedef vector<vector<int>> vvi; typedef vector<vector<long long>> vvl; typedef vector<vector<char>> vvc; template <int mod> struct modint { int x; modint() : x(0) {} modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} modint& operator+=(const modint& p) { if ((x += p.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& p) { x = (int)(1LL * x * p.x % mod); return *this; } modint& operator/=(const modint& p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint(-x); } modint operator+(const modint& p) const { return modint(*this) += p; } modint operator-(const modint& p) const { return modint(*this) -= p; } modint operator*(const modint& p) const { return modint(*this) *= p; } modint operator/(const modint& p) const { return modint(*this) /= p; } bool operator==(const modint& p) const { return x == p.x; } bool operator!=(const modint& p) const { return x != p.x; } modint inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return modint(u); } modint pow(int64_t n) const { modint ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream& operator<<(ostream& os, const modint& p) { return os << p.x; } friend istream& operator>>(istream& is, modint& a) { int64_t t; is >> t; a = modint<mod>(t); return (is); } static int get_mod() { return mod; } }; // abreviations #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++) #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define rrep_(i, a_, b_, a, b, ...) \ for (ll i = (b - 1), min_i = (a); i >= min_i; i--) #define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define srep(i, a, b, c) for (ll i = (a), max_i = (b); i < max_i; i += c) #define SZ(x) ((int)(x).size()) #define pb(x) push_back(x) #define eb(x) emplace_back(x) #define mp make_pair //入出力 #define print(x) cout << x << endl template <class T> ostream& operator<<(ostream& os, const vector<T>& v) { for (auto& e : v) cout << e << " "; cout << endl; return os; } void scan(int& a) { cin >> a; } void scan(long long& a) { cin >> a; } void scan(char& a) { cin >> a; } void scan(double& a) { cin >> a; } void scan(string& a) { cin >> a; } template <class T> void scan(vector<T>& a) { for (auto& i : a) scan(i); } #define vsum(x) accumulate(all(x), 0LL) #define vmax(a) *max_element(all(a)) #define vmin(a) *min_element(all(a)) #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) // functions // gcd(0, x) fails. ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template <typename T> T mypow(T x, ll n) { T ret = 1; while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } ll modpow(ll x, ll n, const ll mod) { ll ret = 1; while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; x %= mod; ret %= mod; } return ret; } uint64_t my_rand(void) { static uint64_t x = 88172645463325252ULL; x = x ^ (x << 13); x = x ^ (x >> 7); return x = x ^ (x << 17); } int popcnt(ull x) { return __builtin_popcountll(x); } // graph template template <typename T> struct edge { int src, to; T cost; edge(int to, T cost) : src(-1), to(to), cost(cost) {} edge(int src, int to, T cost) : src(src), to(to), cost(cost) {} edge& operator=(const int& x) { to = x; return *this; } bool operator<(const edge<T>& r) const { return cost < r.cost; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnWeightedGraph = vector<vector<int>>; struct Timer { clock_t start_time; void start() { start_time = clock(); } int lap() { // return x ms. return (clock() - start_time) * 1000 / CLOCKS_PER_SEC; } }; /* #endregion*/ // constant #define inf 1000000000ll #define INF 4000000004000000000LL #define mod 998244353ll using mint = modint<mod>; typedef vector<mint> vmint; typedef vector<vector<mint>> vvmint; #define endl '\n' const long double eps = 0.000000000000001; const long double PI = 3.141592653589793; // O(√m) // a^x = b (mod m)を満たすxの最小値(なければ-1) // x = p√m+r, p, r < √m // a^r = bA^p ll modlog(ll a, ll b, ll m) { //√m ll sqrt_m = sqrt(m) + 2; // a^-√m ll A = modpow(a, (mod - 2), mod); A = modpow(A, sqrt_m, mod); // a^0,...,a^√m unordered_map<ll, ll> a_pows; ll a_pow = 1; rep(i, sqrt_m + 1) { a_pows[a_pow] = i; a_pow *= a; a_pow %= m; } // A^0,...,A^√m ll A_pow = 1; rep(i, sqrt_m + 1) { if (a_pows.count(A_pow * b)) { return i * sqrt_m + a_pows[A_pow * b]; } A_pow *= A; A_pow %= m; } return -1; } int64_t euler_phi(int64_t n) { int64_t ret = n; for (int64_t i = 2; i * i <= n; i++) { if (n % i == 0) { ret -= ret / i; while (n % i == 0) n /= i; } } if (n > 1) ret -= ret / n; return ret; } template <typename T> struct BIT { vector<T> data; BIT(int sz) { data.assign(++sz, 0); } //[0, k) T sum(int k) { T ret = 0; for (; k > 0; k -= k & -k) ret += data[k]; return (ret); } T sum(int l, int r) { return sum(r) - sum(l); } void add(int k, T x) { for (++k; k < data.size(); k += k & -k) data[k] += x; } // 0-indexedでk番目の値を返す。 int search(long long k) { ++k; int res = 0; int N = 1; while (N < (int)data.size()) N *= 2; for (int i = N / 2; i > 0; i /= 2) { if (res + i < (int)data.size() && data[res + i] < k) { k = k - data[res + i]; res = res + i; } } return res; } // for debug void show() { rep(i, SZ(data) - 1) cout << sum(i + 1) - sum(i) << ' '; cout << endl; } }; ll inversion_number(vi& x, int n) { BIT<int> bit(n); ll res = 0; for (int& y : x) { res += bit.sum(n - 1 - y); bit.add(n - 1 - y, 1); } return res; } template <typename T> struct Compress { vector<T> xs; Compress() = default; Compress(const vector<T>& vs) { add(vs); } Compress(const initializer_list<vector<T>>& vs) { for (auto& p : vs) add(p); } void add(const vector<T>& vs) { copy(begin(vs), end(vs), back_inserter(xs)); } void add(const T& x) { xs.emplace_back(x); } void build() { sort(begin(xs), end(xs)); xs.erase(unique(begin(xs), end(xs)), end(xs)); } vector<int> get(const vector<T>& vs) const { vector<int> ret; transform(begin(vs), end(vs), back_inserter(ret), [&](const T& x) { return lower_bound(begin(xs), end(xs), x) - begin(xs); }); return ret; } int get(const T& x) const { return lower_bound(begin(xs), end(xs), x) - begin(xs); } const T& operator[](int k) const { return xs[k]; } }; struct SuccinctIndexableDictionary { size_t length; size_t blocks; vector<unsigned> bit, sum; SuccinctIndexableDictionary() = default; SuccinctIndexableDictionary(size_t length) : length(length), blocks((length + 31) >> 5) { bit.assign(blocks, 0U); sum.assign(blocks, 0U); } void set(int k) { bit[k >> 5] |= 1U << (k & 31); } void build() { sum[0] = 0U; for (int i = 1; i < blocks; i++) { sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]); } } bool operator[](int k) { return (bool((bit[k >> 5] >> (k & 31)) & 1)); } int rank(int k) { return (sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1))); } int rank(bool val, int k) { return (val ? rank(k) : k - rank(k)); } }; template <typename T, int MAXLOG> struct WaveletMatrix { size_t length; SuccinctIndexableDictionary matrix[MAXLOG]; int mid[MAXLOG]; WaveletMatrix() = default; WaveletMatrix(vector<T> v) : length(v.size()) { vector<T> l(length), r(length); for (int level = MAXLOG - 1; level >= 0; level--) { matrix[level] = SuccinctIndexableDictionary(length + 1); int left = 0, right = 0; for (int i = 0; i < length; i++) { if (((v[i] >> level) & 1)) { matrix[level].set(i); r[right++] = v[i]; } else { l[left++] = v[i]; } } mid[level] = left; matrix[level].build(); v.swap(l); for (int i = 0; i < right; i++) { v[left + i] = r[i]; } } } pair<int, int> succ(bool f, int l, int r, int level) { return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f}; } // v[k] T access(int k) { T ret = 0; for (int level = MAXLOG - 1; level >= 0; level--) { bool f = matrix[level][k]; if (f) ret |= T(1) << level; k = matrix[level].rank(f, k) + mid[level] * f; } return ret; } T operator[](const int& k) { return access(k); } // count i s.t. (0 <= i < r) && v[i] == x int rank(const T& x, int r) { int l = 0; for (int level = MAXLOG - 1; level >= 0; level--) { tie(l, r) = succ((x >> level) & 1, l, r, level); } return r - l; } // k-th(0-indexed) smallest number in v[l,r) T kth_smallest(int l, int r, int k) { assert(0 <= k && k < r - l); T ret = 0; for (int level = MAXLOG - 1; level >= 0; level--) { int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l); bool f = cnt <= k; if (f) { ret |= T(1) << level; k -= cnt; } tie(l, r) = succ(f, l, r, level); } return ret; } // k-th(0-indexed) largest number in v[l,r) T kth_largest(int l, int r, int k) { return kth_smallest(l, r, r - l - k - 1); } // count i s.t. (l <= i < r) && (v[i] < upper) int range_freq(int l, int r, T upper) { int ret = 0; for (int level = MAXLOG - 1; level >= 0; level--) { bool f = ((upper >> level) & 1); if (f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l); tie(l, r) = succ(f, l, r, level); } return ret; } // count i s.t. (l <= i < r) && (lower <= v[i] < upper) int range_freq(int l, int r, T lower, T upper) { return range_freq(l, r, upper) - range_freq(l, r, lower); } // max v[i] s.t. (l <= i < r) && (v[i] < upper) T prev_value(int l, int r, T upper) { int cnt = range_freq(l, r, upper); return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1); } // min v[i] s.t. (l <= i < r) && (lower <= v[i]) T next_value(int l, int r, T lower) { int cnt = range_freq(l, r, lower); return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt); } }; /** * @brief Lazy-Segment-Tree(遅延伝搬セグメント木) * @docs docs/lazy-segment-tree.md */ template <typename Monoid, typename OperatorMonoid> struct LazySegmentTree { int n, sz, height; vector<Monoid> data; vector<OperatorMonoid> lazy; using F = function<Monoid(Monoid, Monoid)>; using G = function<Monoid(Monoid, OperatorMonoid)>; using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>; const F f; const G g; const H h; const Monoid M1; const OperatorMonoid OM0; LazySegmentTree(int n, const F f, const G g, const H h, const Monoid& M1, const OperatorMonoid OM0) : n(n), f(f), g(g), h(h), M1(M1), OM0(OM0) { sz = 1; height = 0; while (sz < n) sz <<= 1, height++; data.assign(2 * sz, M1); lazy.assign(2 * sz, OM0); } void set(int k, const Monoid& x) { data[k + sz] = x; } void build() { for (int k = sz - 1; k > 0; k--) { data[k] = f(data[2 * k + 0], data[2 * k + 1]); } } inline void propagate(int k) { if (lazy[k] != OM0) { lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]); lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]); data[k] = apply(k); lazy[k] = OM0; } } inline Monoid apply(int k) { return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]); } inline void recalc(int k) { while (k >>= 1) data[k] = f(apply(2 * k + 0), apply(2 * k + 1)); } inline void thrust(int k) { for (int i = height; i > 0; i--) propagate(k >> i); } void update(int a, int b, const OperatorMonoid& x) { if (a >= b) return; thrust(a += sz); thrust(b += sz - 1); for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) lazy[l] = h(lazy[l], x), ++l; if (r & 1) --r, lazy[r] = h(lazy[r], x); } recalc(a); recalc(b); } Monoid query(int a, int b) { if (a >= b) return M1; thrust(a += sz); thrust(b += sz - 1); Monoid L = M1, R = M1; for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) L = f(L, apply(l++)); if (r & 1) R = f(apply(--r), R); } return f(L, R); } Monoid operator[](const int& k) { return query(k, k + 1); } template <typename C> int find_subtree(int a, const C& check, Monoid& M, bool type) { while (a < sz) { propagate(a); Monoid nxt = type ? f(apply(2 * a + type), M) : f(M, apply(2 * a + type)); if (check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template <typename C> int find_first(int a, const C& check) { Monoid L = M1; if (a <= 0) { if (check(f(L, apply(1)))) return find_subtree(1, check, L, false); return -1; } thrust(a + sz); int b = sz; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) { Monoid nxt = f(L, apply(a)); if (check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template <typename C> int find_last(int b, const C& check) { Monoid R = M1; if (b >= sz) { if (check(f(apply(1), R))) return find_subtree(1, check, R, true); return -1; } thrust(b + sz - 1); int a = sz; for (b += sz; a < b; a >>= 1, b >>= 1) { if (b & 1) { Monoid nxt = f(apply(--b), R); if (check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } void show() { rep(i, n) cout << query(i, i + 1) << ' '; cout << endl; } }; template <class T, class F = T> T myreplace(T x, F y) { if (y != numeric_limits<F>::max()) x = y; return x; } template <class T> T mymax(T x, T y) { return max(x, y); } template <class T> T mymin(T x, T y) { return min(x, y); } template <class T, class F = T> T myadd(T x, F y) { return x + y; } template <class T> struct segobj { T val; int size; segobj(T x, int y) : val(x), size(y) {} segobj() : val(0), size(0) {} segobj& operator+=(const segobj& p) { val += p.val; size += p.size; return *this; } segobj& operator+=(const T& p) { val += p * size; return *this; } segobj& operator=(const T& p) { val = p * size; return *this; } friend ostream& operator<<(ostream& os, const segobj& p) { return os << p.val; } segobj operator+(const segobj& p) const { return segobj(*this) += p; } segobj operator+(const T& p) const { return segobj(*this) += p; } }; template <class T> struct RMRRQ : LazySegmentTree<T, T> { using Seg = LazySegmentTree<T, T>; RMRRQ(int n) : Seg(n, mymax<T>, myreplace<T>, myreplace<T>, numeric_limits<T>::min(), numeric_limits<T>::max()) {} }; template <class T> struct RmRRQ : LazySegmentTree<T, T> { using Seg = LazySegmentTree<T, T>; RmRRQ(int n) : Seg(n, mymin<T>, myreplace<T>, myreplace<T>, numeric_limits<T>::max(), numeric_limits<T>::max()) {} }; template <class T> struct RMRAQ : LazySegmentTree<T, T> { using Seg = LazySegmentTree<T, T>; RMRAQ(int n) : Seg(n, mymax<T>, plus<T>(), plus<T>(), numeric_limits<T>::min() / 2, T()) {} }; template <class T> struct RmRAQ : LazySegmentTree<T, T> { using Seg = LazySegmentTree<T, T>; RmRAQ(int n) : Seg(n, mymin<T>, plus<T>(), plus<T>(), numeric_limits<T>::max() / 2, T()) {} }; template <class T> struct RSRAQ : LazySegmentTree<segobj<T>, T> { using Seg = LazySegmentTree<segobj<T>, T>; RSRAQ(int n) : Seg(n, plus<segobj<T>>(), myadd<segobj<T>, T>, plus<T>(), segobj<T>(), T()) { rep(i, n) this->set(i, segobj<T>(0, 1)); this->build(); } T sum(int l, int r) { return this->query(l, r).val; } }; template <class T> struct RSRRQ : LazySegmentTree<segobj<T>, T> { using Seg = LazySegmentTree<segobj<T>, T>; using obj = segobj<T>; RSRRQ(int n) : Seg(n, plus<obj>(), myreplace<obj, T>, myreplace<T>, segobj<T>(), numeric_limits<T>::max()) { rep(i, n) this->set(i, segobj<T>(0, 1)); this->build(); } T sum(int l, int r) { return this->query(l, r).val; } }; int main() { cin.tie(0); ios::sync_with_stdio(0); cout << setprecision(30) << fixed; int n; cin >> n; vl a(n); scan(a); mint ans = 0; Compress<ll> cp(a); cp.build(); RSRAQ<mint> segl(n), segr(n), cntl(n), cntr(n); rep(i, n) { int j = cp.get(a[i]); segr.update(j + 1, n, a[i]); cntr.update(j + 1, n, 1); } rep(i, n) { int j = cp.get(a[i]); cntr.update(j + 1, n, -1); segr.update(j + 1, n, -a[i]); ans += cntl.sum(j, j + 1) * cntr.sum(j, j + 1) * a[i]; ans += segl.sum(j, j + 1) * cntr.sum(j, j + 1) + segr.sum(j, j + 1) * cntl.sum(j, j + 1); cntl.update(0, j, 1); segl.update(0, j, a[i]); // cntr.show(); } print(ans); }