結果
問題 | No.1300 Sum of Inversions |
ユーザー |
![]() |
提出日時 | 2020-11-27 21:58:04 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,729 ms / 2,000 ms |
コード長 | 20,372 bytes |
コンパイル時間 | 2,924 ms |
コンパイル使用メモリ | 208,676 KB |
実行使用メモリ | 31,120 KB |
最終ジャッジ日時 | 2024-07-26 12:34:47 |
合計ジャッジ時間 | 42,859 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
ソースコード
/* #region header */#ifdef LOCAL#include "cxx-prettyprint-master/prettyprint.hpp"#define debug(x) cout << x << endl#else#define debug(...) 42#endif#pragma GCC optimize("Ofast")#include <bits/stdc++.h>using namespace std;// typesusing ll = long long;using ull = unsigned long long;using ld = long double;typedef pair<ll, ll> Pl;typedef pair<int, int> Pi;typedef vector<ll> vl;typedef vector<int> vi;typedef vector<char> vc;template <typename T>using mat = vector<vector<T>>;typedef vector<vector<int>> vvi;typedef vector<vector<long long>> vvl;typedef vector<vector<char>> vvc;template <int mod>struct modint {int x;modint() : x(0) {}modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}modint& operator+=(const modint& p) {if ((x += p.x) >= mod) x -= mod;return *this;}modint& operator-=(const modint& p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}modint& operator*=(const modint& p) {x = (int)(1LL * x * p.x % mod);return *this;}modint& operator/=(const modint& p) {*this *= p.inverse();return *this;}modint operator-() const { return modint(-x); }modint operator+(const modint& p) const { return modint(*this) += p; }modint operator-(const modint& p) const { return modint(*this) -= p; }modint operator*(const modint& p) const { return modint(*this) *= p; }modint operator/(const modint& p) const { return modint(*this) /= p; }bool operator==(const modint& p) const { return x == p.x; }bool operator!=(const modint& p) const { return x != p.x; }modint inverse() const {int a = x, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return modint(u);}modint pow(int64_t n) const {modint ret(1), mul(x);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream& operator<<(ostream& os, const modint& p) {return os << p.x;}friend istream& operator>>(istream& is, modint& a) {int64_t t;is >> t;a = modint<mod>(t);return (is);}static int get_mod() { return mod; }};// abreviations#define all(x) (x).begin(), (x).end()#define rall(x) (x).rbegin(), (x).rend()#define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++)#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)#define rrep_(i, a_, b_, a, b, ...) \for (ll i = (b - 1), min_i = (a); i >= min_i; i--)#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)#define srep(i, a, b, c) for (ll i = (a), max_i = (b); i < max_i; i += c)#define SZ(x) ((int)(x).size())#define pb(x) push_back(x)#define eb(x) emplace_back(x)#define mp make_pair//入出力#define print(x) cout << x << endltemplate <class T>ostream& operator<<(ostream& os, const vector<T>& v) {for (auto& e : v) cout << e << " ";cout << endl;return os;}void scan(int& a) { cin >> a; }void scan(long long& a) { cin >> a; }void scan(char& a) { cin >> a; }void scan(double& a) { cin >> a; }void scan(string& a) { cin >> a; }template <class T>void scan(vector<T>& a) {for (auto& i : a) scan(i);}#define vsum(x) accumulate(all(x), 0LL)#define vmax(a) *max_element(all(a))#define vmin(a) *min_element(all(a))#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))// functions// gcd(0, x) fails.ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }template <class T>bool chmax(T& a, const T& b) {if (a < b) {a = b;return 1;}return 0;}template <class T>bool chmin(T& a, const T& b) {if (b < a) {a = b;return 1;}return 0;}template <typename T>T mypow(T x, ll n) {T ret = 1;while (n > 0) {if (n & 1) (ret *= x);(x *= x);n >>= 1;}return ret;}ll modpow(ll x, ll n, const ll mod) {ll ret = 1;while (n > 0) {if (n & 1) (ret *= x);(x *= x);n >>= 1;x %= mod;ret %= mod;}return ret;}uint64_t my_rand(void) {static uint64_t x = 88172645463325252ULL;x = x ^ (x << 13);x = x ^ (x >> 7);return x = x ^ (x << 17);}int popcnt(ull x) { return __builtin_popcountll(x); }// graph templatetemplate <typename T>struct edge {int src, to;T cost;edge(int to, T cost) : src(-1), to(to), cost(cost) {}edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}edge& operator=(const int& x) {to = x;return *this;}bool operator<(const edge<T>& r) const { return cost < r.cost; }operator int() const { return to; }};template <typename T>using Edges = vector<edge<T>>;template <typename T>using WeightedGraph = vector<Edges<T>>;using UnWeightedGraph = vector<vector<int>>;struct Timer {clock_t start_time;void start() { start_time = clock(); }int lap() {// return x ms.return (clock() - start_time) * 1000 / CLOCKS_PER_SEC;}};/* #endregion*/// constant#define inf 1000000000ll#define INF 4000000004000000000LL#define mod 998244353llusing mint = modint<mod>;typedef vector<mint> vmint;typedef vector<vector<mint>> vvmint;#define endl '\n'const long double eps = 0.000000000000001;const long double PI = 3.141592653589793;// O(√m)// a^x = b (mod m)を満たすxの最小値(なければ-1)// x = p√m+r, p, r < √m// a^r = bA^pll modlog(ll a, ll b, ll m) {//√mll sqrt_m = sqrt(m) + 2;// a^-√mll A = modpow(a, (mod - 2), mod);A = modpow(A, sqrt_m, mod);// a^0,...,a^√munordered_map<ll, ll> a_pows;ll a_pow = 1;rep(i, sqrt_m + 1) {a_pows[a_pow] = i;a_pow *= a;a_pow %= m;}// A^0,...,A^√mll A_pow = 1;rep(i, sqrt_m + 1) {if (a_pows.count(A_pow * b)) {return i * sqrt_m + a_pows[A_pow * b];}A_pow *= A;A_pow %= m;}return -1;}int64_t euler_phi(int64_t n) {int64_t ret = n;for (int64_t i = 2; i * i <= n; i++) {if (n % i == 0) {ret -= ret / i;while (n % i == 0) n /= i;}}if (n > 1) ret -= ret / n;return ret;}template <typename T>struct BIT {vector<T> data;BIT(int sz) { data.assign(++sz, 0); }//[0, k)T sum(int k) {T ret = 0;for (; k > 0; k -= k & -k) ret += data[k];return (ret);}T sum(int l, int r) { return sum(r) - sum(l); }void add(int k, T x) {for (++k; k < data.size(); k += k & -k) data[k] += x;}// 0-indexedでk番目の値を返す。int search(long long k) {++k;int res = 0;int N = 1;while (N < (int)data.size()) N *= 2;for (int i = N / 2; i > 0; i /= 2) {if (res + i < (int)data.size() && data[res + i] < k) {k = k - data[res + i];res = res + i;}}return res;}// for debugvoid show() {rep(i, SZ(data) - 1) cout << sum(i + 1) - sum(i) << ' ';cout << endl;}};ll inversion_number(vi& x, int n) {BIT<int> bit(n);ll res = 0;for (int& y : x) {res += bit.sum(n - 1 - y);bit.add(n - 1 - y, 1);}return res;}template <typename T>struct Compress {vector<T> xs;Compress() = default;Compress(const vector<T>& vs) { add(vs); }Compress(const initializer_list<vector<T>>& vs) {for (auto& p : vs) add(p);}void add(const vector<T>& vs) {copy(begin(vs), end(vs), back_inserter(xs));}void add(const T& x) { xs.emplace_back(x); }void build() {sort(begin(xs), end(xs));xs.erase(unique(begin(xs), end(xs)), end(xs));}vector<int> get(const vector<T>& vs) const {vector<int> ret;transform(begin(vs), end(vs), back_inserter(ret), [&](const T& x) {return lower_bound(begin(xs), end(xs), x) - begin(xs);});return ret;}int get(const T& x) const {return lower_bound(begin(xs), end(xs), x) - begin(xs);}const T& operator[](int k) const { return xs[k]; }};struct SuccinctIndexableDictionary {size_t length;size_t blocks;vector<unsigned> bit, sum;SuccinctIndexableDictionary() = default;SuccinctIndexableDictionary(size_t length): length(length), blocks((length + 31) >> 5) {bit.assign(blocks, 0U);sum.assign(blocks, 0U);}void set(int k) { bit[k >> 5] |= 1U << (k & 31); }void build() {sum[0] = 0U;for (int i = 1; i < blocks; i++) {sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]);}}bool operator[](int k) { return (bool((bit[k >> 5] >> (k & 31)) & 1)); }int rank(int k) {return (sum[k >> 5] +__builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1)));}int rank(bool val, int k) { return (val ? rank(k) : k - rank(k)); }};template <typename T, int MAXLOG>struct WaveletMatrix {size_t length;SuccinctIndexableDictionary matrix[MAXLOG];int mid[MAXLOG];WaveletMatrix() = default;WaveletMatrix(vector<T> v) : length(v.size()) {vector<T> l(length), r(length);for (int level = MAXLOG - 1; level >= 0; level--) {matrix[level] = SuccinctIndexableDictionary(length + 1);int left = 0, right = 0;for (int i = 0; i < length; i++) {if (((v[i] >> level) & 1)) {matrix[level].set(i);r[right++] = v[i];} else {l[left++] = v[i];}}mid[level] = left;matrix[level].build();v.swap(l);for (int i = 0; i < right; i++) {v[left + i] = r[i];}}}pair<int, int> succ(bool f, int l, int r, int level) {return {matrix[level].rank(f, l) + mid[level] * f,matrix[level].rank(f, r) + mid[level] * f};}// v[k]T access(int k) {T ret = 0;for (int level = MAXLOG - 1; level >= 0; level--) {bool f = matrix[level][k];if (f) ret |= T(1) << level;k = matrix[level].rank(f, k) + mid[level] * f;}return ret;}T operator[](const int& k) { return access(k); }// count i s.t. (0 <= i < r) && v[i] == xint rank(const T& x, int r) {int l = 0;for (int level = MAXLOG - 1; level >= 0; level--) {tie(l, r) = succ((x >> level) & 1, l, r, level);}return r - l;}// k-th(0-indexed) smallest number in v[l,r)T kth_smallest(int l, int r, int k) {assert(0 <= k && k < r - l);T ret = 0;for (int level = MAXLOG - 1; level >= 0; level--) {int cnt =matrix[level].rank(false, r) - matrix[level].rank(false, l);bool f = cnt <= k;if (f) {ret |= T(1) << level;k -= cnt;}tie(l, r) = succ(f, l, r, level);}return ret;}// k-th(0-indexed) largest number in v[l,r)T kth_largest(int l, int r, int k) {return kth_smallest(l, r, r - l - k - 1);}// count i s.t. (l <= i < r) && (v[i] < upper)int range_freq(int l, int r, T upper) {int ret = 0;for (int level = MAXLOG - 1; level >= 0; level--) {bool f = ((upper >> level) & 1);if (f)ret +=matrix[level].rank(false, r) - matrix[level].rank(false, l);tie(l, r) = succ(f, l, r, level);}return ret;}// count i s.t. (l <= i < r) && (lower <= v[i] < upper)int range_freq(int l, int r, T lower, T upper) {return range_freq(l, r, upper) - range_freq(l, r, lower);}// max v[i] s.t. (l <= i < r) && (v[i] < upper)T prev_value(int l, int r, T upper) {int cnt = range_freq(l, r, upper);return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1);}// min v[i] s.t. (l <= i < r) && (lower <= v[i])T next_value(int l, int r, T lower) {int cnt = range_freq(l, r, lower);return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt);}};/*** @brief Lazy-Segment-Tree(遅延伝搬セグメント木)* @docs docs/lazy-segment-tree.md*/template <typename Monoid, typename OperatorMonoid>struct LazySegmentTree {int n, sz, height;vector<Monoid> data;vector<OperatorMonoid> lazy;using F = function<Monoid(Monoid, Monoid)>;using G = function<Monoid(Monoid, OperatorMonoid)>;using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;const F f;const G g;const H h;const Monoid M1;const OperatorMonoid OM0;LazySegmentTree(int n, const F f, const G g, const H h, const Monoid& M1,const OperatorMonoid OM0): n(n), f(f), g(g), h(h), M1(M1), OM0(OM0) {sz = 1;height = 0;while (sz < n) sz <<= 1, height++;data.assign(2 * sz, M1);lazy.assign(2 * sz, OM0);}void set(int k, const Monoid& x) { data[k + sz] = x; }void build() {for (int k = sz - 1; k > 0; k--) {data[k] = f(data[2 * k + 0], data[2 * k + 1]);}}inline void propagate(int k) {if (lazy[k] != OM0) {lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);data[k] = apply(k);lazy[k] = OM0;}}inline Monoid apply(int k) {return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);}inline void recalc(int k) {while (k >>= 1) data[k] = f(apply(2 * k + 0), apply(2 * k + 1));}inline void thrust(int k) {for (int i = height; i > 0; i--) propagate(k >> i);}void update(int a, int b, const OperatorMonoid& x) {if (a >= b) return;thrust(a += sz);thrust(b += sz - 1);for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {if (l & 1) lazy[l] = h(lazy[l], x), ++l;if (r & 1) --r, lazy[r] = h(lazy[r], x);}recalc(a);recalc(b);}Monoid query(int a, int b) {if (a >= b) return M1;thrust(a += sz);thrust(b += sz - 1);Monoid L = M1, R = M1;for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {if (l & 1) L = f(L, apply(l++));if (r & 1) R = f(apply(--r), R);}return f(L, R);}Monoid operator[](const int& k) { return query(k, k + 1); }template <typename C>int find_subtree(int a, const C& check, Monoid& M, bool type) {while (a < sz) {propagate(a);Monoid nxt =type ? f(apply(2 * a + type), M) : f(M, apply(2 * a + type));if (check(nxt))a = 2 * a + type;elseM = nxt, a = 2 * a + 1 - type;}return a - sz;}template <typename C>int find_first(int a, const C& check) {Monoid L = M1;if (a <= 0) {if (check(f(L, apply(1)))) return find_subtree(1, check, L, false);return -1;}thrust(a + sz);int b = sz;for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {if (a & 1) {Monoid nxt = f(L, apply(a));if (check(nxt)) return find_subtree(a, check, L, false);L = nxt;++a;}}return -1;}template <typename C>int find_last(int b, const C& check) {Monoid R = M1;if (b >= sz) {if (check(f(apply(1), R))) return find_subtree(1, check, R, true);return -1;}thrust(b + sz - 1);int a = sz;for (b += sz; a < b; a >>= 1, b >>= 1) {if (b & 1) {Monoid nxt = f(apply(--b), R);if (check(nxt)) return find_subtree(b, check, R, true);R = nxt;}}return -1;}void show() {rep(i, n) cout << query(i, i + 1) << ' ';cout << endl;}};template <class T, class F = T>T myreplace(T x, F y) {if (y != numeric_limits<F>::max()) x = y;return x;}template <class T>T mymax(T x, T y) {return max(x, y);}template <class T>T mymin(T x, T y) {return min(x, y);}template <class T, class F = T>T myadd(T x, F y) {return x + y;}template <class T>struct segobj {T val;int size;segobj(T x, int y) : val(x), size(y) {}segobj() : val(0), size(0) {}segobj& operator+=(const segobj& p) {val += p.val;size += p.size;return *this;}segobj& operator+=(const T& p) {val += p * size;return *this;}segobj& operator=(const T& p) {val = p * size;return *this;}friend ostream& operator<<(ostream& os, const segobj& p) {return os << p.val;}segobj operator+(const segobj& p) const { return segobj(*this) += p; }segobj operator+(const T& p) const { return segobj(*this) += p; }};template <class T>struct RMRRQ : LazySegmentTree<T, T> {using Seg = LazySegmentTree<T, T>;RMRRQ(int n): Seg(n, mymax<T>, myreplace<T>, myreplace<T>, numeric_limits<T>::min(),numeric_limits<T>::max()) {}};template <class T>struct RmRRQ : LazySegmentTree<T, T> {using Seg = LazySegmentTree<T, T>;RmRRQ(int n): Seg(n, mymin<T>, myreplace<T>, myreplace<T>, numeric_limits<T>::max(),numeric_limits<T>::max()) {}};template <class T>struct RMRAQ : LazySegmentTree<T, T> {using Seg = LazySegmentTree<T, T>;RMRAQ(int n): Seg(n, mymax<T>, plus<T>(), plus<T>(), numeric_limits<T>::min() / 2,T()) {}};template <class T>struct RmRAQ : LazySegmentTree<T, T> {using Seg = LazySegmentTree<T, T>;RmRAQ(int n): Seg(n, mymin<T>, plus<T>(), plus<T>(), numeric_limits<T>::max() / 2,T()) {}};template <class T>struct RSRAQ : LazySegmentTree<segobj<T>, T> {using Seg = LazySegmentTree<segobj<T>, T>;RSRAQ(int n): Seg(n, plus<segobj<T>>(), myadd<segobj<T>, T>, plus<T>(), segobj<T>(),T()) {rep(i, n) this->set(i, segobj<T>(0, 1));this->build();}T sum(int l, int r) { return this->query(l, r).val; }};template <class T>struct RSRRQ : LazySegmentTree<segobj<T>, T> {using Seg = LazySegmentTree<segobj<T>, T>;using obj = segobj<T>;RSRRQ(int n): Seg(n, plus<obj>(), myreplace<obj, T>, myreplace<T>, segobj<T>(),numeric_limits<T>::max()) {rep(i, n) this->set(i, segobj<T>(0, 1));this->build();}T sum(int l, int r) { return this->query(l, r).val; }};int main() {cin.tie(0);ios::sync_with_stdio(0);cout << setprecision(30) << fixed;int n;cin >> n;vl a(n);scan(a);mint ans = 0;Compress<ll> cp(a);cp.build();RSRAQ<mint> segl(n), segr(n), cntl(n), cntr(n);rep(i, n) {int j = cp.get(a[i]);segr.update(j + 1, n, a[i]);cntr.update(j + 1, n, 1);}rep(i, n) {int j = cp.get(a[i]);cntr.update(j + 1, n, -1);segr.update(j + 1, n, -a[i]);ans += cntl.sum(j, j + 1) * cntr.sum(j, j + 1) * a[i];ans += segl.sum(j, j + 1) * cntr.sum(j, j + 1) +segr.sum(j, j + 1) * cntl.sum(j, j + 1);cntl.update(0, j, 1);segl.update(0, j, a[i]);// cntr.show();}print(ans);}