結果

問題 No.1300 Sum of Inversions
ユーザー cotton_fn_
提出日時 2020-11-27 22:17:38
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 82 ms / 2,000 ms
コード長 11,526 bytes
コンパイル時間 17,064 ms
コンパイル使用メモリ 404,080 KB
実行使用メモリ 10,212 KB
最終ジャッジ日時 2024-07-26 13:16:30
合計ジャッジ時間 20,657 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#![allow(unused_imports, unused_macros)]
use kyoproio::*;
use std::{
collections::*,
io::{self, prelude::*},
iter,
mem::{replace, swap},
};
fn run<I: Input, O: Write>(mut kin: I, mut out: O) {
macro_rules! output { ($($args:expr),+) => { write!(&mut out, $($args),+).unwrap(); }; }
macro_rules! outputln {
($($args:expr),+) => { output!($($args),+); outputln!(); };
() => { output!("\n"); if cfg!(debug_assertions) { out.flush().unwrap(); } }
}
let n: usize = kin.input();
let a: Vec<_> = kin.iter::<i32>().take(n).map(|x| mint(x)).collect();
let mut sa = a.clone();
sa.sort_by_key(|x| -x.get());
sa.dedup();
let map: HashMap<_, _> = sa.into_iter().enumerate().map(|(i, x)| (x, i)).collect();
let make_ft = || FenwickTree::new(n, || mint(0), |x, y| *x + *y);
let mut ft_sum1 = make_ft();
let mut ft_cnt1 = make_ft();
let mut ft_sum2 = make_ft();
let mut ft_cnt2 = make_ft();
let mut ans = mint(0);
for x in a {
let i = *map.get(&x).unwrap();
let x = x.normalize();
ft_sum1.add(i, x);
ft_cnt1.add(i, mint(1));
ft_sum2.add(i, ft_sum1.sum(i) + ft_cnt1.sum(i) * x);
ft_cnt2.add(i, ft_cnt1.sum(i));
ans += ft_sum2.sum(i) + ft_cnt2.sum(i) * x;
}
outputln!("{}", ans.normalize());
}
pub struct FenwickTree<T, F, Z> {
a: Vec<T>,
f: F,
z: Z,
}
impl<T, F: Fn(&T, &T) -> T, Z: Fn() -> T> FenwickTree<T, F, Z> {
pub fn new(n: usize, z: Z, f: F) -> Self {
Self {
a: (0..=n).map(|_| z()).collect(),
f,
z,
}
}
pub fn add(&mut self, mut i: usize, x: T) {
i += 1;
while i < self.a.len() {
self.a[i] = (self.f)(&self.a[i], &x);
i += i & (!i + 1);
}
}
// [0, i)
pub fn sum(&self, mut i: usize) -> T {
let mut s = (self.z)();
while i > 0 {
s = (self.f)(&self.a[i], &s);
i -= i & (!i + 1);
}
s
}
pub fn reset(&mut self) {
for a in &mut self.a {
*a = (self.z)();
}
}
}
pub type Mint = ModInt<Mod998244353>;
pub fn mint<T: Into<i32>>(x: T) -> ModInt<Mod998244353> {
ModInt::new(x.into())
}
pub trait Modulo: Copy {
fn modulo() -> i32;
}
macro_rules! modulo_impl {
($($Type:ident $val:tt)*) => {
$(#[derive(Copy, Clone, Eq, PartialEq, Default, Hash)]
pub struct $Type;
impl Modulo for $Type {
fn modulo() -> i32 {
$val
}
})*
};
}
modulo_impl!(Mod998244353 998244353 Mod1e9p7 1000000007);
use std::sync::atomic;
#[derive(Copy, Clone, Eq, PartialEq, Default, Hash)]
pub struct VarMod;
static VAR_MOD: atomic::AtomicI32 = atomic::AtomicI32::new(0);
pub fn set_var_mod(m: i32) {
VAR_MOD.store(m, atomic::Ordering::Relaxed);
}
impl Modulo for VarMod {
fn modulo() -> i32 {
VAR_MOD.load(atomic::Ordering::Relaxed)
}
}
use std::{fmt, marker::PhantomData, ops};
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct ModInt<M>(i32, PhantomData<M>);
impl<M: Modulo> ModInt<M> {
pub fn new(x: i32) -> Self {
debug_assert!(x < M::modulo());
Self(x, PhantomData)
}
pub fn normalize(self) -> Self {
if self.0 < self.m() && 0 <= self.0 {
self
} else {
Self::new(self.0.rem_euclid(self.m()))
}
}
pub fn get(self) -> i32 {
self.0
}
pub fn inv(self) -> Self {
self.pow(self.m() - 2)
}
pub fn pow(self, mut n: i32) -> Self {
while n < 0 {
n += self.m() - 1;
}
let mut x = self;
let mut y = Self::new(1);
while n > 0 {
if n % 2 == 1 {
y *= x;
}
x *= x;
n /= 2;
}
y
}
pub fn half(self) -> Self {
Self::new(self.0 / 2 + self.0 % 2 * ((self.m() + 1) / 2))
}
pub fn modulo() -> i32 {
M::modulo()
}
fn m(self) -> i32 {
M::modulo()
}
}
impl<M: Modulo> ops::Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self {
Self::new(if self.0 == 0 { 0 } else { self.m() - self.0 })
}
}
impl<M: Modulo> ops::AddAssign for ModInt<M> {
fn add_assign(&mut self, rhs: Self) {
self.0 += rhs.0;
if self.0 >= self.m() {
self.0 -= self.m();
}
}
}
impl<M: Modulo> ops::SubAssign for ModInt<M> {
fn sub_assign(&mut self, rhs: Self) {
self.0 -= rhs.0;
if self.0 < 0 {
self.0 += self.m();
}
}
}
impl<M: Modulo> ops::MulAssign for ModInt<M> {
fn mul_assign(&mut self, rhs: Self) {
self.0 = (self.0 as u32 as u64 * rhs.0 as u32 as u64 % self.m() as u32 as u64) as i32;
}
}
impl<M: Modulo> ops::DivAssign for ModInt<M> {
fn div_assign(&mut self, rhs: Self) {
assert_ne!(rhs.0, 0);
*self *= rhs.inv();
}
}
macro_rules! op_impl {
($($Op:ident $op:ident $OpAssign:ident $op_assign:ident)*) => {
$(impl<M: Modulo> ops::$Op for ModInt<M> {
type Output = Self;
fn $op(self, rhs: Self) -> Self {
let mut res = self;
ops::$OpAssign::$op_assign(&mut res, rhs);
res
}
})*
};
}
op_impl! {
Add add AddAssign add_assign
Sub sub SubAssign sub_assign
Mul mul MulAssign mul_assign
Div div DivAssign div_assign
}
impl<M: Modulo> std::iter::Sum for ModInt<M> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ModInt::new(0), |x, y| x + y)
}
}
impl<M: Modulo> std::iter::Product for ModInt<M> {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ModInt::new(1), |x, y| x * y)
}
}
impl<M: Modulo> fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl<M: Modulo> fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("ModInt(")?;
self.0.fmt(f)?;
f.pad(")")
}
}
// -----------------------------------------------------------------------------
fn main() -> io::Result<()> {
std::thread::Builder::new()
.stack_size(64 * 1024 * 1024)
.spawn(|| {
run(
KInput::new(io::stdin()),
io::BufWriter::new(io::stdout().lock()),
)
})?
.join()
.unwrap();
Ok(())
}
// -----------------------------------------------------------------------------
pub mod kyoproio {
use std::{io::prelude::*, mem};
pub trait Input {
fn bytes(&mut self) -> &[u8];
fn str(&mut self) -> &str {
std::str::from_utf8(self.bytes()).unwrap()
}
fn input<T: InputParse>(&mut self) -> T {
T::input(self)
}
fn iter<T: InputParse>(&mut self) -> Iter<T, Self> {
Iter(self, std::marker::PhantomData)
}
fn seq<T: InputParse, B: std::iter::FromIterator<T>>(&mut self, n: usize) -> B {
self.iter().take(n).collect()
}
}
pub struct KInput<R> {
src: R,
buf: Vec<u8>,
pos: usize,
len: usize,
}
impl<R: Read> KInput<R> {
pub fn new(src: R) -> Self {
Self {
src,
buf: vec![0; 1 << 16],
pos: 0,
len: 0,
}
}
}
impl<R: Read> Input for KInput<R> {
fn bytes(&mut self) -> &[u8] {
loop {
while let Some(delim) = self.buf[self.pos..self.len]
.iter()
.position(|b| b.is_ascii_whitespace())
{
let p = self.pos;
self.pos += delim + 1;
if delim > 0 {
return &self.buf[p..p + delim];
}
}
if self.read() == 0 {
return &self.buf[mem::replace(&mut self.pos, self.len)..self.len];
}
}
}
}
impl<R: Read> KInput<R> {
fn read(&mut self) -> usize {
if self.pos > 0 {
self.buf.copy_within(self.pos..self.len, 0);
self.len -= self.pos;
self.pos = 0;
} else if self.len >= self.buf.len() {
self.buf.resize(2 * self.buf.len(), 0);
}
let read = self.src.read(&mut self.buf[self.len..]).unwrap();
self.len += read;
read
}
}
pub struct Iter<'a, T, I: ?Sized>(&'a mut I, std::marker::PhantomData<*const T>);
impl<'a, T: InputParse, I: Input + ?Sized> Iterator for Iter<'a, T, I> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.0.input())
}
fn size_hint(&self) -> (usize, Option<usize>) {
(!0, None)
}
}
pub trait InputParse: Sized {
fn input<I: Input + ?Sized>(src: &mut I) -> Self;
}
impl InputParse for Vec<u8> {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
src.bytes().to_owned()
}
}
macro_rules! from_str_impl {
{ $($T:ty)* } => {
$(impl InputParse for $T {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
src.str().parse::<$T>().unwrap()
}
})*
}
}
from_str_impl! { String char bool f32 f64 }
macro_rules! parse_int_impl {
{ $($I:ty: $U:ty)* } => {
$(impl InputParse for $I {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I);
let s = src.bytes();
if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) }
}
}
impl InputParse for $U {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U)
}
})*
};
}
parse_int_impl! { isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128 }
macro_rules! tuple_impl {
($H:ident $($T:ident)*) => {
impl<$H: InputParse, $($T: InputParse),*> InputParse for ($H, $($T),*) {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
($H::input(src), $($T::input(src)),*)
}
}
tuple_impl!($($T)*);
};
() => {}
}
tuple_impl!(A B C D E F G);
macro_rules! array_impl {
{ $($N:literal)* } => {
$(impl<T: InputParse> InputParse for [T; $N] {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
let mut arr = mem::MaybeUninit::uninit();
unsafe {
let ptr = arr.as_mut_ptr() as *mut T;
for i in 0..$N {
ptr.add(i).write(src.input());
}
arr.assume_init()
}
}
})*
};
}
array_impl! { 1 2 3 4 5 6 7 8 }
#[macro_export]
macro_rules! kdbg {
($($v:expr),*) => {
if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) }
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0