結果
問題 | No.1300 Sum of Inversions |
ユーザー | 👑 Nachia |
提出日時 | 2020-11-27 22:20:49 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 274 ms / 2,000 ms |
コード長 | 2,024 bytes |
コンパイル時間 | 2,416 ms |
コンパイル使用メモリ | 205,188 KB |
最終ジャッジ日時 | 2025-01-16 07:43:27 |
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:99:44: warning: narrowing conversion of ‘A.std::vector<int>::operator[](((std::vector<int>::size_type)i))’ from ‘__gnu_cxx::__alloc_traits<std::allocator<int>, int>::value_type’ {aka ‘int’} to ‘ULL’ {aka ‘long long unsigned int’} [-Wnarrowing] 99 | ans = ans + G2.prod(0,lb[i]) * S{A[i],1}; | ^ main.cpp:100:56: warning: narrowing conversion of ‘A.std::vector<int>::operator[](((std::vector<int>::size_type)i))’ from ‘__gnu_cxx::__alloc_traits<std::allocator<int>, int>::value_type’ {aka ‘int’} to ‘ULL’ {aka ‘long long unsigned int’} [-Wnarrowing] 100 | G2.set(I[i], G2.get(I[i])+G1.prod(0,lb[i])*S{A[i],1}); | ^ main.cpp:101:26: warning: narrowing conversion of ‘A.std::vector<int>::operator[](((std::vector<int>::size_type)i))’ from ‘__gnu_cxx::__alloc_traits<std::allocator<int>, int>::value_type’ {aka ‘int’} to ‘ULL’ {aka ‘long long unsigned int’} [-Wnarrowing] 101 | G1.set(I[i], S{A[i],1}); | ^
ソースコード
#include<bits/stdc++.h> using namespace std; using LL=long long; using ULL=unsigned long long; #define rep(i,n) for(int i=0;i<(n);i++) const ULL M = 998244353; template< class S, S(*op)(S a, S b), S(*e)() > struct segtree { private: int N; vector<S> V; public: segtree(int n) { N = 1; while (N < n) N *= 2; V.assign(N * 2, e()); } segtree(vector<S> A) { N = 1; while (N < A.size()) N *= 2; V.assign(N * 2, e()); rep(i, A.size()) V[N + i] = A[i]; for (int i = N - 1; i >= 1; i--) V[i] = op(V[i * 2], V[i * 2 + 1]); } void set(int p, S v) { p += N; V[p] = v; while (p != 1) { p /= 2; V[p] = op(V[p * 2], V[p * 2 + 1]); } } S get(int p) { p += N; return V[p]; } S prod(int l, int r) { S ans_l = e(), ans_r = e(); l += N; r += N; while (l < r) { if (l & 1) ans_l = op(ans_l, V[l++]); if (r & 1) ans_r = op(V[--r], ans_r); l /= 2; r /= 2; } return op(ans_l, ans_r); } }; struct S{ ULL s,c; }; S operator+(S l, S r){ S res = { l.s+r.s, l.c+r.c }; if(res.s>=M) res.s-=M; if(res.c>=M) res.c-=M; return res; } S operator*(S l, S r){ return { (l.s*r.c+l.c*r.s)%M, l.c*r.c%M}; } S op(S l, S r) { return l+r; } S e() { return {0,0}; } using RQ = segtree<S, op, e>; int lower_bound_idx(const vector<pair<int,int>>& ref, pair<int,int> v){ int l,r; l=0; r=ref.size()+1; while(l+1<r){ int m=(l+r)/2; if(ref[m-1]<v) l=m; else r=m; } return l; } int main(){ int N; cin>>N; vector<int> A(N); rep(i,N) cin>>A[i]; vector<pair<int,int>> xA(N); rep(i,N) xA[i]={-A[i],i}; sort(xA.begin(),xA.end()); vector<int> I(N); rep(i,N) I[xA[i].second]=i; vector<int> lb(N); rep(i,N) lb[i]=lower_bound_idx(xA,{-A[i],-1}); rep(i,N) A[i]%=M; RQ G1(N); RQ G2(N); S ans=e(); rep(i,N){ ans = ans + G2.prod(0,lb[i]) * S{A[i],1}; G2.set(I[i], G2.get(I[i])+G1.prod(0,lb[i])*S{A[i],1}); G1.set(I[i], S{A[i],1}); } cout<<ans.s<<endl; return 0; }