結果

問題 No.1300 Sum of Inversions
ユーザー yuruhiyayuruhiya
提出日時 2020-11-27 22:22:42
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 117 ms / 2,000 ms
コード長 29,652 bytes
コンパイル時間 2,680 ms
コンパイル使用メモリ 213,640 KB
最終ジャッジ日時 2025-01-16 07:45:40
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 2 "/home/yuruhiya/programming/library/template/template.cpp"
#include <bits/stdc++.h>
#line 4 "/home/yuruhiya/programming/library/template/constants.cpp"
#include <string_view>
#line 7 "/home/yuruhiya/programming/library/template/constants.cpp"
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define FOR(i, m, n) for (int i = (m); i < (n); ++i)
#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)
#define rfor(i, m, n) for (int i = (m); i >= (n); --i)
#define unless(c) if (!(c))
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)
using namespace std;
using ll = long long;
using LD = long double;
using VB = vector<bool>;
using VVB = vector<VB>;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VS = vector<string>;
using VD = vector<LD>;
using PII = pair<int, int>;
using VP = vector<PII>;
using PLL = pair<ll, ll>;
using VPL = vector<PLL>;
template <class T> using PQ = priority_queue<T>;
template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;
constexpr int inf = 1000000000;
constexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;
constexpr long double PI = 3.14159265358979323846, EPS = 1e-12;
namespace CharacterClass {
constexpr string_view
digit = "0123456789",
xdigit = "0123456789ABCDEFabcdef", lower = "abcdefghijklmnopqrstuvwxyz",
upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
alnum = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
word = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz",
punct = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~",
graph =
"!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~",
print =
" !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~",
blank = " \t", space = " \t\n\r\f\v";
} // namespace CharacterClass
#line 7 "/home/yuruhiya/programming/library/template/Input.cpp"
using namespace std;
#ifdef _WIN32
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#define fwrite_unlocked fwrite
#define fflush_unlocked fflush
#endif
class Scanner {
static int gc() {
return getchar_unlocked();
}
static char next_char() {
char c;
read(c);
return c;
}
template <class T> static void read(T& v) {
cin >> v;
}
static void read(char& v) {
while (isspace(v = gc()))
;
}
static void read(bool& v) {
v = next_char() != '0';
}
static void read(string& v) {
v.clear();
for (char c = next_char(); !isspace(c); c = gc()) v += c;
}
static void read(int& v) {
v = 0;
bool neg = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
if (neg) v = -v;
}
static void read(long long& v) {
v = 0;
bool neg = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
if (neg) v = -v;
}
static void read(double& v) {
v = 0;
double dp = 1;
bool neg = false, after_dp = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c) || c == '.'; c = gc()) {
if (c == '.') {
after_dp = true;
} else if (after_dp) {
v += (c - '0') * (dp *= 0.1);
} else {
v = v * 10 + (c - '0');
}
}
if (neg) v = -v;
}
static void read(long double& v) {
v = 0;
long double dp = 1;
bool neg = false, after_dp = false;
char c = next_char();
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c) || c == '.'; c = gc()) {
if (c == '.') {
after_dp = true;
} else if (after_dp) {
v += (c - '0') * (dp *= 0.1);
} else {
v = v * 10 + (c - '0');
}
}
if (neg) v = -v;
}
template <class T, class U> static void read(pair<T, U>& v) {
read(v.first);
read(v.second);
}
template <class T> static void read(vector<T>& v) {
for (auto& e : v) read(e);
}
template <size_t N = 0, class T> static void read_tuple_impl(T& v) {
if constexpr (N < tuple_size_v<T>) {
read(get<N>(v));
read_tuple_impl<N + 1>(v);
}
}
template <class... T> static void read(tuple<T...>& v) {
read_tuple_impl(v);
}
struct ReadVectorHelper {
size_t n;
ReadVectorHelper(size_t _n) : n(_n) {}
template <class T> operator vector<T>() {
vector<T> v(n);
read(v);
return v;
}
};
struct Read2DVectorHelper {
size_t n, m;
Read2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}
template <class T> operator vector<vector<T>>() {
vector<vector<T>> v(n, vector<T>(m));
read(v);
return v;
}
};
public:
string read_line() const {
string v;
for (char c = next_char(); c != '\n' && c != '\0'; c = gc()) v += c;
return v;
}
template <class T> T read() const {
T v;
read(v);
return v;
}
template <class T> vector<T> read_vector(size_t n) const {
vector<T> a(n);
read(a);
return a;
}
template <class T> operator T() const {
return read<T>();
}
int operator--(int) const {
return read<int>() - 1;
}
ReadVectorHelper operator[](size_t n) const {
return ReadVectorHelper(n);
}
Read2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {
return Read2DVectorHelper(nm);
}
void operator()() const {}
template <class H, class... T> void operator()(H&& h, T&&... t) const {
read(h);
operator()(forward<T>(t)...);
}
private:
template <template <class...> class, class...> struct Multiple;
template <template <class...> class V, class Head, class... Tail>
struct Multiple<V, Head, Tail...> {
template <class... Args> using vec = V<vector<Head>, Args...>;
using type = typename Multiple<vec, Tail...>::type;
};
template <template <class...> class V> struct Multiple<V> { using type = V<>; };
template <class... T> using multiple_t = typename Multiple<tuple, T...>::type;
template <size_t N = 0, class T> void multiple_impl(T& t) const {
if constexpr (N < tuple_size_v<T>) {
auto& vec = get<N>(t);
using V = typename remove_reference_t<decltype(vec)>::value_type;
vec.push_back(read<V>());
multiple_impl<N + 1>(t);
}
}
public:
template <class... T> auto multiple(size_t h) const {
multiple_t<T...> result;
while (h--) multiple_impl(result);
return result;
}
} in;
#define inputs(T, ...) \
T __VA_ARGS__; \
in(__VA_ARGS__)
#define ini(...) inputs(int, __VA_ARGS__)
#define inl(...) inputs(long long, __VA_ARGS__)
#define ins(...) inputs(string, __VA_ARGS__)
#line 7 "/home/yuruhiya/programming/library/template/Output.cpp"
#include <charconv>
#line 10 "/home/yuruhiya/programming/library/template/Output.cpp"
using namespace std;
struct BoolStr {
const char *t, *f;
BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}
} Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0");
struct DivStr {
const char *d, *l;
DivStr(const char* _d, const char* _l) : d(_d), l(_l) {}
} spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"),
no_endl(" ", "");
class Output {
BoolStr B{Yes};
DivStr D{spc};
public:
void put(int v) const {
char buf[12]{};
if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
fwrite(buf, sizeof(char), ptr - buf, stdout);
} else {
assert(false);
}
}
void put(long long v) const {
char buf[21]{};
if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
fwrite(buf, sizeof(char), ptr - buf, stdout);
} else {
assert(false);
}
}
void put(bool v) const {
put(v ? B.t : B.f);
}
void put(char v) const {
putchar_unlocked(v);
}
void put(const char* v) const {
fwrite_unlocked(v, 1, strlen(v), stdout);
}
void put(double v) const {
printf("%.20f", v);
}
void put(long double v) const {
printf("%.20Lf", v);
}
template <class T> void put(const T& v) const {
cout << v;
}
template <class T, class U> void put(const pair<T, U>& v) const {
put(v.first);
put(D.d);
put(v.second);
}
template <class InputIterater>
void put_range(const InputIterater& begin, const InputIterater& end) const {
for (InputIterater i = begin; i != end; ++i) {
if (i != begin) put(D.d);
put(*i);
}
}
template <class T> void put(const vector<T>& v) const {
put_range(v.begin(), v.end());
}
template <class T, size_t N> void put(const array<T, N>& v) const {
put_range(v.begin(), v.end());
}
template <class T> void put(const vector<vector<T>>& v) const {
for (size_t i = 0; i < v.size(); ++i) {
if (i) put(D.l);
put(v[i]);
}
}
Output() = default;
Output(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}
Output& operator()() {
put(D.l);
return *this;
}
template <class H> Output& operator()(H&& h) {
put(h);
put(D.l);
return *this;
}
template <class H, class... T> Output& operator()(H&& h, T&&... t) {
put(h);
put(D.d);
return operator()(forward<T>(t)...);
}
template <class InputIterator>
Output& range(const InputIterator& begin, const InputIterator& end) {
put_range(begin, end);
put(D.l);
return *this;
}
template <class T> Output& range(const T& a) {
range(a.begin(), a.end());
return *this;
}
template <class... T> void exit(T&&... t) {
operator()(forward<T>(t)...);
std::exit(EXIT_SUCCESS);
}
Output& flush() {
fflush_unlocked(stdout);
return *this;
}
Output& set(const BoolStr& b) {
B = b;
return *this;
}
Output& set(const DivStr& d) {
D = d;
return *this;
}
Output& set(const char* t, const char* f) {
B = BoolStr(t, f);
return *this;
}
} out;
#line 3 "/home/yuruhiya/programming/library/template/Step.cpp"
using namespace std;
template <class T> struct Step {
using value_type = T;
class iterator {
value_type a, b, c;
public:
constexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}
constexpr iterator(value_type _b, value_type _c, value_type _s)
: a(_b), b(_c), c(_s) {}
constexpr iterator& operator++() {
--b;
a += c;
return *this;
}
constexpr iterator operator++(int) {
iterator tmp = *this;
--b;
a += c;
return tmp;
}
constexpr const value_type& operator*() const {
return a;
}
constexpr const value_type* operator->() const {
return &a;
}
constexpr bool operator==(const iterator& i) const {
return b == i.b;
}
constexpr bool operator!=(const iterator& i) const {
return !(b == i.b);
}
constexpr value_type start() const {
return a;
}
constexpr value_type size() const {
return b;
}
constexpr value_type step() const {
return c;
}
};
constexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}
constexpr iterator begin() const {
return be;
}
constexpr iterator end() const {
return en;
}
constexpr value_type start() const {
return be.start();
}
constexpr value_type size() const {
return be.size();
}
constexpr value_type step() const {
return be.step();
}
constexpr value_type sum() const {
return start() * size() + step() * (size() * (size() - 1) / 2);
}
operator vector<value_type>() const {
return to_a();
}
auto to_a() const {
vector<value_type> result;
result.reserve(size());
for (auto i : *this) {
result.push_back(i);
}
return result;
}
private:
iterator be, en;
};
template <class T> constexpr auto step(T a) {
return Step<T>(0, a, 1);
}
template <class T> constexpr auto step(T a, T b) {
return Step<T>(a, b - a, 1);
}
template <class T> constexpr auto step(T a, T b, T c) {
return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);
}
#line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp"
using namespace std;
template <class F> struct Callable {
F func;
Callable(const F& f) : func(f) {}
};
template <class T, class F> auto operator|(const T& v, const Callable<F>& c) {
return c.func(v);
}
struct Sort_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(begin(v), end(v), f);
return v;
});
}
template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {
sort(begin(v), end(v));
return v;
}
} Sort;
struct SortBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(begin(v), end(v),
[&](const auto& i, const auto& j) { return f(i) < f(j); });
return v;
});
}
} SortBy;
struct RSort_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(rbegin(v), rend(v), f);
return v;
});
}
template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {
sort(rbegin(v), rend(v));
return v;
}
} RSort;
struct RSortBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(begin(v), end(v),
[&](const auto& i, const auto& j) { return f(i) > f(j); });
return v;
});
}
} RSortBy;
struct Reverse_impl {
template <class T> friend auto operator|(T v, const Reverse_impl& c) {
reverse(begin(v), end(v));
return v;
}
} Reverse;
struct Unique_impl {
template <class T> friend auto operator|(T v, const Unique_impl& c) {
v.erase(unique(begin(v), end(v), end(v)));
return v;
}
} Unique;
struct Uniq_impl {
template <class T> friend auto operator|(T v, const Uniq_impl& c) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
return v;
}
} Uniq;
struct Rotate_impl {
auto operator()(int&& left) {
return Callable([&](auto v) {
int s = static_cast<int>(size(v));
assert(-s <= left && left <= s);
if (0 <= left) {
rotate(begin(v), begin(v) + left, end(v));
} else {
rotate(begin(v), end(v) + left, end(v));
}
return v;
});
}
} Rotate;
struct Max_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) { return *max_element(begin(v), end(v), f); });
}
template <class T> friend auto operator|(T v, const Max_impl& c) {
return *max_element(begin(v), end(v));
}
} Max;
struct Min_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) { return *min_element(begin(v), end(v), f); });
}
template <class T> friend auto operator|(T v, const Min_impl& c) {
return *min_element(begin(v), end(v));
}
} Min;
struct MaxPos_impl {
template <class T> friend auto operator|(T v, const MaxPos_impl& c) {
return max_element(begin(v), end(v)) - begin(v);
}
} MaxPos;
struct MinPos_impl {
template <class T> friend auto operator|(T v, const MinPos_impl& c) {
return min_element(begin(v), end(v)) - begin(v);
}
} MinPos;
struct MaxBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto max_it = begin(v);
auto max_val = f(*max_it);
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); max_val < val) {
max_it = it;
max_val = val;
}
}
return *max_it;
});
}
} MaxBy;
struct MinBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto min_it = begin(v);
auto min_val = f(*min_it);
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); min_val > val) {
min_it = it;
min_val = val;
}
}
return *min_it;
});
}
} MinBy;
struct MaxOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto max_val = f(*begin(v));
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); max_val < val) {
max_val = val;
}
}
return max_val;
});
}
} MaxOf;
struct MinOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto min_val = f(*begin(v));
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); min_val > val) {
min_val = val;
}
}
return min_val;
});
}
} MinOf;
struct Count_impl {
template <class V> auto operator()(const V& val) {
return Callable([&](auto v) { return count(begin(v), end(v), val); });
}
} Count;
struct CountIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) { return count_if(begin(v), end(v), f); });
}
} CountIf;
struct Index_impl {
template <class V> auto operator()(const V& val) {
return Callable([&](auto v) -> optional<int> {
auto result = find(begin(v), end(v), val);
return result != end(v) ? optional(result - begin(v)) : nullopt;
});
}
} Index;
struct IndexIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) -> optional<int> {
auto result = find_if(begin(v), end(v), f);
return result != end(v) ? optional(result - begin(v)) : nullopt;
});
}
} IndexIf;
struct FindIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) -> optional<typename decltype(v)::value_type> {
auto result = find_if(begin(v), end(v), f);
return result != end(v) ? optional(*result) : nullopt;
});
}
} FindIf;
struct Sum_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
return accumulate(next(begin(v)), end(v), f(*begin(v)),
[&](const auto& a, const auto& b) { return a + f(b); });
});
}
template <class T> friend auto operator|(T v, const Sum_impl& c) {
return accumulate(begin(v), end(v), typename T::value_type{});
}
} Sum;
struct Includes {
template <class V> auto operator()(const V& val) {
return Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });
}
} Includes;
struct IncludesIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });
}
} IncludesIf;
struct RemoveIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) {
v.erase(remove_if(begin(v), end(v), f), end(v));
return v;
});
}
} RemoveIf;
struct Each_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
f(i);
}
});
}
} Each;
struct Select_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
using value_type = typename decltype(v)::value_type;
vector<value_type> result;
for (const auto& i : v) {
if (f(i)) result.push_back(i);
}
return result;
});
}
} Select;
struct Map_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
using result_type = invoke_result_t<F, typename decltype(v)::value_type>;
vector<result_type> result;
result.reserve(size(v));
for (const auto& i : v) {
result.push_back(f(i));
}
return result;
});
}
} Map;
struct Indexed_impl {
template <class T> friend auto operator|(const T& v, Indexed_impl& c) {
using value_type = typename T::value_type;
vector<pair<value_type, int>> result;
result.reserve(size(v));
int index = 0;
for (const auto& i : v) {
result.emplace_back(i, index++);
}
return result;
}
} Indexed;
struct AllOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
if (!f(i)) return false;
}
return true;
});
}
} AllOf;
struct AnyOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
if (f(i)) return true;
}
return false;
});
}
} AnyOf;
struct NoneOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
if (f(i)) return false;
}
return true;
});
}
} NoneOf;
struct Tally_impl {
template <class F> auto operator()(size_t max_val) {
return Callable([&](auto v) {
vector<size_t> result(max_val);
for (const auto& i : v) {
result[static_cast<size_t>(i)]++;
}
return result;
});
}
template <class T, class value_type = typename T::value_type>
friend auto operator|(const T& v, Tally_impl& c) {
map<value_type, size_t> result;
for (const auto& i : v) {
result[i]++;
}
return result;
}
} Tally;
template <class T> auto operator*(const vector<T>& a, size_t n) {
T result;
for (size_t i = 0; i < n; ++i) {
result.insert(result.end(), a.begin(), a.end());
}
return result;
}
auto operator*(string a, size_t n) {
string result;
for (size_t i = 0; i < n; ++i) {
result += a;
}
return result;
}
template <class T, class U> auto& operator<<(vector<T>& a, const U& b) {
a.insert(a.end(), all(b));
return a;
}
template <class T> auto& operator<<(string& a, const T& b) {
a.insert(a.end(), all(b));
return a;
}
template <class T, class U> auto operator+(vector<T> a, const U& b) {
a << b;
return a;
}
template <class T> auto operator+(string a, const T& b) {
a << b;
return a;
}
#line 6 "/home/yuruhiya/programming/library/template/functions.cpp"
using namespace std;
template <class T> int sz(const T& v) {
return v.size();
}
template <class T, class U> int lower_index(const T& a, const U& v) {
return lower_bound(all(a), v) - a.begin();
}
template <class T, class U> int upper_index(const T& a, const U& v) {
return upper_bound(all(a), v) - a.begin();
}
template <class T> auto Slice(const T& v, size_t i, size_t len) {
return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();
}
template <class T> T div_ceil(T n, T m) {
return (n + m - 1) / m;
}
template <class T> T div_ceil2(T n, T m) {
return div_ceil(n, m) * m;
}
template <class T> T triangle(T n) {
return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);
}
template <class T> T nC2(T n) {
return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);
}
template <class T> T middle(const T& l, const T& r) {
return l + (r - l) / 2;
}
template <class T> bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> bool chmin(T& a, const T& b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> bool in_range(const T& v, const T& min, const T& max) {
return min <= v && v < max;
}
template <class T> bool in_square(T n) {
T s = sqrt(n);
return s * s == n || (s + 1) * (s + 1) == n;
}
template <class T = long long> T BIT(int b) {
return T(1) << b;
}
template <class T, class U = typename T::value_type> U Gcdv(const T& v) {
return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);
}
template <class T, class U = typename T::value_type> U Lcmv(const T& v) {
return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);
}
template <class T, class U> T Pow(T a, U n) {
T result = 1;
while (n > 0) {
if (n & 1) {
result *= a;
n--;
} else {
a *= a;
n >>= 1;
}
}
return result;
}
template <class T, class U> T Powmod(T a, U n, T mod) {
T result = 1;
while (n > 0) {
if (n & 1) {
result = result * a % mod;
n--;
} else {
a = a * a % mod;
n >>= 1;
}
}
return result;
}
namespace internal {
template <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {
if constexpr (N == 1) {
return vector(sizes[0], init);
} else {
int size = sizes[N - 1];
sizes.pop_back();
return vector(size, make_vector<T, N - 1>(sizes, init));
}
}
} // namespace internal
template <class T, size_t N>
auto make_vector(const int (&sizes)[N], const T& init = T()) {
vector s(rbegin(sizes), rend(sizes));
return internal::make_vector<T, N>(s, init);
}
#line 9 "/home/yuruhiya/programming/library/template/template.cpp"
#if __has_include(<library/dump.hpp>)
#include <library/dump.hpp>
#define LOCAL
#else
#define dump(...) ((void)0)
#endif
template <class T> constexpr T oj_local(const T& oj, const T& local) {
#ifndef LOCAL
return oj;
#else
return local;
#endif
}
#line 5 "/home/yuruhiya/programming/library/Math/modint.cpp"
using namespace std;
template <int MOD> struct modint {
using T = long long;
T n;
constexpr modint(const T x = 0) : n(x % MOD) {
if (n < 0) n += MOD;
}
constexpr int get_mod() const {
return MOD;
}
constexpr modint operator+() const {
return *this;
}
constexpr modint operator-() const {
return n ? MOD - n : 0;
}
constexpr modint& operator++() {
if (MOD <= ++n) n = 0;
return *this;
}
constexpr modint& operator--() {
if (n <= 0) n = MOD;
n--;
return *this;
}
constexpr modint operator++(int) {
modint t = *this;
++*this;
return t;
}
constexpr modint operator--(int) {
modint t = *this;
--*this;
return t;
}
constexpr modint next() const {
return ++modint(*this);
}
constexpr modint pred() const {
return --modint(*this);
}
constexpr modint operator+(const modint& m) const {
return modint(*this) += m;
}
constexpr modint operator-(const modint& m) const {
return modint(*this) -= m;
}
constexpr modint operator*(const modint& m) const {
return modint(*this) *= m;
}
constexpr modint operator/(const modint& m) const {
return modint(*this) /= m;
}
constexpr modint& operator+=(const modint& m) {
n += m.n;
if (n >= MOD) n -= MOD;
return *this;
}
constexpr modint& operator-=(const modint& m) {
n -= m.n;
if (n < 0) n += MOD;
return *this;
}
constexpr modint& operator*=(const modint& m) {
n = n * m.n % MOD;
return *this;
}
constexpr modint& operator/=(const modint& m) {
T a = m.n, b = MOD, u = 1, v = 0;
while (b) {
T t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
n = n * u % MOD;
if (n < 0) n += MOD;
return *this;
}
constexpr bool operator==(const modint& m) const {
return n == m.n;
}
constexpr bool operator!=(const modint& m) const {
return n != m.n;
}
template <class M> constexpr modint pow(M m) const {
if (0 <= m) {
modint t = n, result = 1;
while (m > 0) {
if (m & 1) {
result *= t;
m--;
} else {
t *= t;
m >>= 1;
}
}
return result;
} else {
return (modint(1) / n).pow(-m);
}
}
template <class M> constexpr modint operator^(M m) const {
return pow(m);
}
friend ostream& operator<<(ostream& os, const modint<MOD>& m) {
return os << m.n;
}
friend istream& operator>>(istream& is, modint<MOD>& m) {
long long x;
cin >> x;
m = modint(x);
return is;
}
};
using mint = modint<1000000007>;
using VM = vector<mint>;
mint operator""_m(unsigned long long n) {
return n;
}
#line 4 "/home/yuruhiya/programming/library/DataStructure/BinaryIndexedTree.cpp"
using namespace std;
template <class T> class BinaryIndexedTree {
public:
using value_type = T;
private:
int n, n2;
vector<value_type> a;
public:
BinaryIndexedTree(int n_) : n(n_), n2(1), a(n_ + 1) {
while (n2 < n) n2 *= 2;
n2 /= 2;
}
value_type operator()(int i) const { // [0, i]
assert(0 < ++i);
value_type result = 0;
for (; i > 0; i -= i & -i) {
result += a[i];
}
return result;
}
value_type operator()(int i, int j) const { // [i, j]
return operator()(j) - (i ? operator()(i - 1) : 0);
}
value_type operator[](int i) const {
return operator()(i, i);
}
void add(int i, value_type x) {
assert(0 < ++i);
for (; i <= n; i += i & -i) {
a[i] += x;
}
}
int lower_bound(value_type k) const {
if (k <= 0) return 0;
int result = 0;
for (int i = n2; i > 0; i /= 2) {
if (result + i <= n && a[result + i] < k) {
k -= a[result + i];
result += i;
}
}
return result;
}
vector<value_type> to_a() const {
vector<value_type> result(n);
for (int i = 0; i < n; ++i) {
result[i] = operator()(i, i);
}
return result;
}
};
#line 5 "/home/yuruhiya/programming/library/Utility/Compress.cpp"
using namespace std;
template <class T> class Compress {
public:
using value_type = T;
private:
vector<value_type> v;
bool flag = false;
public:
Compress() {}
template <class U> Compress(const U& a) {
add(a);
}
Compress& add(const value_type& a) {
flag = false;
v.push_back(a);
return *this;
}
template <class U> Compress& add(const vector<U>& a) {
flag = false;
for (const auto& i : a) add(i);
return *this;
}
template <class U> Compress& add(const initializer_list<U>& a) {
flag = false;
for (const auto& v : a) add(v);
return *this;
}
template <class U> Compress& operator<<(const U& a) {
add(a);
return *this;
}
void build() {
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
flag = true;
}
int operator()(const value_type& x) const {
assert(flag);
return lower_bound(v.begin(), v.end(), x) - v.begin();
}
vector<int> operator()(const vector<value_type>& x) const {
assert(flag);
vector<int> result;
result.reserve(x.size());
for (const value_type& i : x) {
result.push_back(lower_bound(v.begin(), v.end(), i) - v.begin());
}
return result;
}
int size() const {
assert(flag);
return v.size();
}
const vector<value_type>& operator*() const {
assert(flag);
return v;
}
const value_type& operator[](int i) const {
assert(flag);
return v[i];
}
};
#line 5 "a.cpp"
using Mint = modint<998244353>;
int main() {
int n = in;
VL a = in[n];
n += 2;
a.insert(a.begin(), -1);
a.push_back(-1);
Compress<ll> cmp(a);
cmp.build();
VI b = cmp(a);
dump(b);
BinaryIndexedTree<Mint> left(n), right(n);
BinaryIndexedTree<ll> left_cnt(n), right_cnt(n);
FOR(i, 1, n - 1) {
right.add(b[i], a[i]);
right_cnt.add(b[i], 1);
}
Mint ans = 0;
FOR(i, 1, n - 1) {
left.add(b[i - 1], a[i - 1]);
left_cnt.add(b[i - 1], 1);
right.add(b[i], -a[i]);
right_cnt.add(b[i], -1);
Mint lval = left(b[i] + 1, n - 1), rval = right(0, b[i] - 1);
Mint lcnt = left_cnt(b[i] + 1, n - 1), rcnt = right_cnt(0, b[i] - 1);
dump(tuple(i, lval, rval, lcnt, rcnt));
ans += lval * rcnt + rval * lcnt + (lcnt * rcnt) * a[i];
}
out(ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0