結果
問題 | No.1303 Inconvenient Kingdom |
ユーザー | ei1333333 |
提出日時 | 2020-11-27 22:29:08 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 13,909 bytes |
コンパイル時間 | 3,240 ms |
コンパイル使用メモリ | 238,216 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-26 18:47:38 |
合計ジャッジ時間 | 6,593 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 3 ms
6,944 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 3 ms
6,940 KB |
testcase_08 | AC | 3 ms
6,944 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | AC | 8 ms
6,944 KB |
testcase_19 | AC | 12 ms
6,944 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 5 ms
6,944 KB |
testcase_27 | AC | 4 ms
6,944 KB |
testcase_28 | AC | 4 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,944 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 3 ms
6,940 KB |
testcase_37 | AC | 3 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using int64 = long long; //const int mod = 1e9 + 7; const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } /** * @brief Union-Find * @docs docs/union-find.md */ struct UnionFind { vector< int > data; UnionFind() = default; explicit UnionFind(size_t sz) : data(sz, -1) {} bool unite(int x, int y) { x = find(x), y = find(y); if(x == y) return false; if(data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; return true; } int find(int k) { if(data[k] < 0) return (k); return data[k] = find(data[k]); } int size(int k) { return -data[find(k)]; } bool same(int x, int y) { return find(x) == find(y); } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; /** * @brief Formal-Power-Series(形式的冪級数) */ template< typename T > struct FormalPowerSeries : vector< T > { using vector< T >::vector; using P = FormalPowerSeries; using MULT = function< vector< T >(P, P) >; using FFT = function< void(P &) >; using SQRT = function< T(T) >; static MULT &get_mult() { static MULT mult = nullptr; return mult; } static void set_mult(MULT f) { get_mult() = f; } static FFT &get_fft() { static FFT fft = nullptr; return fft; } static FFT &get_ifft() { static FFT ifft = nullptr; return ifft; } static void set_fft(FFT f, FFT g) { get_fft() = f; get_ifft() = g; if(get_mult() == nullptr) { auto mult = [&](P a, P b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; int sz = 1 << nbase; a.resize(sz, T(0)); b.resize(sz, T(0)); get_fft()(a); get_fft()(b); for(int i = 0; i < sz; i++) a[i] *= b[i]; get_ifft()(a); a.resize(need); return a; }; set_mult(mult); } } static SQRT &get_sqrt() { static SQRT sqr = nullptr; return sqr; } static void set_sqrt(SQRT sqr) { get_sqrt() = sqr; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i]; shrink(); return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; shrink(); return *this; } P &operator*=(const T &v) { const int n = (int) this->size(); for(int k = 0; k < n; k++) (*this)[k] *= v; return *this; } P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } assert(get_mult() != nullptr); auto ret = get_mult()(*this, r); return *this = P(begin(ret), end(ret)); } P &operator%=(const P &r) { return *this -= *this / r * r; } P operator-() const { P ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P dot(P r) const { P ret(min(this->size(), r.size())); for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } P pre(int sz) const { return P(begin(*this), begin(*this) + min((int) this->size(), sz)); } P operator>>(int sz) const { if(this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } T operator()(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } P diff() const; P integral() const; // F(0) must not be 0 P inv_fast() const; P inv(int deg = -1) const; // F(0) must be 1 P log(int deg = -1) const; P sqrt(int deg = -1) const; // F(0) must be 0 P exp_fast(int deg = -1) const; P exp(int deg = -1) const; P pow(int64_t k, int deg = -1) const; P mod_pow(int64_t k, P g) const; P taylor_shift(T c) const; }; template< typename T > using FPSGraph = vector< vector< pair< int, T > > >; template< typename T > FormalPowerSeries< T > random_poly(int n) { mt19937 mt(1333333); FormalPowerSeries< T > res(n); uniform_int_distribution< int > rand(0, T::get_mod() - 1); for(int i = 0; i < n; i++) res[i] = rand(mt); return res; } template< typename T > FormalPowerSeries< T > next_poly(const FormalPowerSeries< T > &dp, const FPSGraph< T > &g) { const int N = (int) dp.size(); FormalPowerSeries< T > nxt(N); for(int i = 0; i < N; i++) { for(auto &p : g[i]) nxt[p.first] += p.second * dp[i]; } return nxt; } template< class T > FormalPowerSeries< T > berlekamp_massey(const FormalPowerSeries< T > &s) { const int N = (int) s.size(); FormalPowerSeries< T > b = {T(-1)}, c = {T(-1)}; T y = T(1); for(int ed = 1; ed <= N; ed++) { int l = int(c.size()), m = int(b.size()); T x = 0; for(int i = 0; i < l; i++) x += c[i] * s[ed - l + i]; b.emplace_back(0); m++; if(x == T(0)) continue; T freq = x / y; if(l < m) { auto tmp = c; c.insert(begin(c), m - l, T(0)); for(int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i]; b = tmp; y = x; } else { for(int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i]; } } return c; } template< typename T > FormalPowerSeries< T > minimum_poly(const FPSGraph< T > &g) { const int N = (int) g.size(); auto dp = random_poly< T >(N), u = random_poly< T >(N); FormalPowerSeries< T > f(2 * N); for(int i = 0; i < 2 * N; i++) { for(auto &p : u.dot(dp)) f[i] += p; dp = next_poly(dp, g); } return berlekamp_massey(f); } /* O(N(N+S) + N log N log Q) (O(S): time complexity of nex) */ template< typename T > FormalPowerSeries< T > sparse_pow(int64_t Q, FormalPowerSeries< T > dp, const FPSGraph< T > &g) { const int N = (int) dp.size(); auto A = FormalPowerSeries< T >({0, 1}).pow_mod(Q, minimum_poly(g)); FormalPowerSeries< T > res(N); for(int i = 0; i < A.size(); i++) { res += dp * A[i]; dp = next_poly(dp, g); } return res; } /* O(N(N+S)) (S: none-zero elements)*/ template< typename T > T sparse_determinant(FPSGraph< T > g) { using FPS = FormalPowerSeries< T >; int N = (int) g.size(); auto C = random_poly< T >(N); for(int i = 0; i < N; i++) for(auto &p : g[i]) p.second *= C[i]; auto u = minimum_poly(g); T acdet = u[0]; if(N % 2 == 0) acdet *= -1; T cdet = 1; for(int i = 0; i < N; i++) cdet *= C[i]; return acdet / cdet; } int main() { int N, M; cin >> N >> M; auto g = make_v< int >(N, N); UnionFind uf(N); for(int i = 0; i < M; i++) { int x, y; cin >> x >> y; --x, --y; g[x][y] = true; g[y][x] = true; uf.unite(x, y); } vector< pair< int, int > > sz; for(int i = 0; i < N; i++) { if(uf.find(i) == i) { sz.emplace_back(uf.size(i), i); } } // 本数が最小なので全域木の個数です.... auto uku = [&]() { vector< int > deg(N); FPSGraph< modint > f(N - 1); for(int x = 0; x < N; x++) { for(int y = x + 1; y < N; y++) { if(!g[x][y]) continue; deg[x] += g[x][y], deg[y] += g[x][y]; if(x < N - 1 and y < N - 1) { f[x].emplace_back(y, -g[x][y]); f[y].emplace_back(x, -g[x][y]); } } } for(int i = 0; i < N - 1; i++) { f[i].emplace_back(i, deg[i]); } return sparse_determinant(f); }; if(sz.size() == 1) { modint all = uku(); modint ret = all; for(int i = 0; i < N; i++) { int idx = -1; for(int j = i + 1; j < N; j++) { if(g[i][j]) { continue; } idx = j; } if(idx == -1) { continue; } auto f = make_v< int >(N - 1, N - 1); vector< int > nxt(N); int ptr = 0; for(int j = 0; j < N; j++) { if(idx == j) { nxt[j] = nxt[i]; } else { nxt[j] = ptr++; } } modint mul = 1; for(int j = 0; j < N; j++) { for(int k = 0; k < N; k++) { if(nxt[j] < nxt[k] and g[nxt[j]][nxt[k]]) { f[nxt[j]][nxt[k]]++; f[nxt[k]][nxt[j]]++; } } } swap(f, g); --N; auto coef = uku(); ++N; swap(f, g); for(int j = i + 1; j < N; j++) { if(g[i][j]) { continue; } ret += coef; } } cout << 0 << "\n"; cout << ret << "\n"; } else { auto sz2{sz}; sort(sz2.rbegin(), sz2.rend()); const int top1 = sz2[0].first; const int top2 = sz2[1].first; modint mul = 0; if(top1 == top2) { for(auto &p : sz2) { if(p.first == top1) mul += 1; } mul = mul * (mul - 1) * top1 * top2 / 2; } else { for(auto &p : sz2) { if(p.first == top2) mul += top2; } mul *= top1; } for(int i = 1; i < sz.size(); i++) { g[sz[0].second][sz[i].second] = true; g[sz[i].second][sz[0].second] = true; } modint x = (top1 + top2) * (N - top1 - top2); for(int i = 2; i < sz2.size(); i++) x += sz2[i].first * (N - sz2[i].first); cout << x << "\n"; cout << uku() * mul << "\n"; } }