結果
問題 | No.1303 Inconvenient Kingdom |
ユーザー |
![]() |
提出日時 | 2020-11-27 22:43:09 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,450 bytes |
コンパイル時間 | 2,987 ms |
コンパイル使用メモリ | 220,716 KB |
最終ジャッジ日時 | 2025-01-16 08:03:30 |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 WA * 1 |
other | AC * 18 WA * 16 |
ソースコード
#include <bits/stdc++.h>class Dsu {public:Dsu() {}explicit Dsu(int n) : dat(n, -1), num_ccs_(n) {}int size() const { return std::size(dat); }int root(int v) {assert(0 <= v), assert(v < size());return dat[v] < 0 ? v : dat[v] = root(dat[v]);}std::pair<int, int> unite(int u, int v) {assert(0 <= u), assert(u < size());assert(0 <= v), assert(v < size());u = root(u), v = root(v);if (u == v) return {u, -1};--num_ccs_;if (-dat[u] < -dat[v]) std::swap(u, v);dat[u] += dat[v];dat[v] = u;return {u, v};}bool same(int u, int v) {assert(0 <= u), assert(u < size());assert(0 <= v), assert(v < size());return root(u) == root(v);}int size(int v) {assert(0 <= v), assert(v < size());return -dat[root(v)];}int num_ccs() const { return num_ccs_; }private:std::vector<int> dat;int num_ccs_;};template <uint32_t Modulus>class ModularInt {using M = ModularInt;public:static_assert(int(Modulus) >= 1, "Modulus must be in the range [1, 2^31)");static constexpr int modulus() { return Modulus; }static M raw(uint32_t v) { return *reinterpret_cast<M*>(&v); }ModularInt() : v_(0) {}ModularInt(int64_t v) : v_((v %= Modulus) < 0 ? v + Modulus : v) {}template <class T>explicit operator T() const {return v_;}M& operator++() { return v_ = ++v_ == Modulus ? 0 : v_, *this; }M& operator--() { return --(v_ ? v_ : v_ = Modulus), *this; }M operator+() const { return *this; }M operator-() const { return raw(v_ ? Modulus - v_ : 0); }M& operator*=(M o) { return v_ = uint64_t(v_) * o.v_ % Modulus, *this; }M& operator/=(M o) {auto [inv, gcd] = extgcd(o.v_, Modulus);assert(gcd == 1);return *this *= inv;}M& operator+=(M o) {return v_ = int(v_ += o.v_ - Modulus) < 0 ? v_ + Modulus : v_, *this;}M& operator-=(M o) {return v_ = int(v_ -= o.v_) < 0 ? v_ + Modulus : v_, *this;}friend M operator++(M& a, int) { return std::exchange(a, ++M(a)); }friend M operator--(M& a, int) { return std::exchange(a, --M(a)); }friend M operator*(M a, M b) { return a *= b; }friend M operator/(M a, M b) { return a /= b; }friend M operator+(M a, M b) { return a += b; }friend M operator-(M a, M b) { return a -= b; }friend std::istream& operator>>(std::istream& is, M& x) {int64_t v;return is >> v, x = v, is;}friend std::ostream& operator<<(std::ostream& os, M x) { return os << x.v_; }friend bool operator==(M a, M b) { return a.v_ == b.v_; }friend bool operator!=(M a, M b) { return a.v_ != b.v_; }private:static std::array<int, 2> extgcd(int a, int b) {std::array x{1, 0};while (b) std::swap(x[0] -= a / b * x[1], x[1]), std::swap(a %= b, b);return {x[0], a};}uint32_t v_;};#pragma region my_templatestruct Rep {struct I {int i;void operator++() { ++i; }int operator*() const { return i; }bool operator!=(I o) const { return i < *o; }};const int l_, r_;Rep(int l, int r) : l_(l), r_(r) {}Rep(int n) : Rep(0, n) {}I begin() const { return {l_}; }I end() const { return {r_}; }};struct Per {struct I {int i;void operator++() { --i; }int operator*() const { return i; }bool operator!=(I o) const { return i > *o; }};const int l_, r_;Per(int l, int r) : l_(l), r_(r) {}Per(int n) : Per(0, n) {}I begin() const { return {r_ - 1}; }I end() const { return {l_ - 1}; }};template <class F>struct Fix : private F {Fix(F f) : F(f) {}template <class... Args>decltype(auto) operator()(Args&&... args) const {return F::operator()(*this, std::forward<Args>(args)...);}};template <class T = int>T scan() {T res;std::cin >> res;return res;}template <class T, class U = T>bool chmin(T& a, U&& b) {return b < a ? a = std::forward<U>(b), true : false;}template <class T, class U = T>bool chmax(T& a, U&& b) {return a < b ? a = std::forward<U>(b), true : false;}#ifndef LOCAL#define DUMP(...) void(0)template <int OnlineJudge, int Local>constexpr int OjLocal = OnlineJudge;#endifusing namespace std;#define ALL(c) begin(c), end(c)#pragma endregionusing Mint = ModularInt<998244353>;constexpr int N = 1 << 10;auto fact = [] {std::vector<Mint> res(N + 1);res[0] = 1;for (int i = 1; i <= N; ++i) res[i] = i * res[i - 1];return res;}();auto ifact = [] {std::vector<Mint> res(N + 1);res[N] = 1 / fact[N];for (int i = N; i--;) res[i] = res[i + 1] * (i + 1);return res;}();Mint binom(int n, int k) {assert(n <= N);return 0 <= k and k <= n ? fact[n] * ifact[k] * ifact[n - k] : 0;}Mint homo(int n, int k) { return n or k ? binom(n + k - 1, k) : 1; }auto minv = [] {std::vector<Mint> res(N + 1);for (int i = 1; i <= N; ++i) res[i] = ifact[i] * fact[i - 1];return res;}();template <>Mint& Mint::operator/=(Mint o) {assert(o.v_);return *this *= o.v_ <= N ? minv[o.v_] : extgcd(o.v_, modulus())[0];}template <class T>T determinant(vector<vector<T>> a) {T det = 1;for (int j = 0, r = 0, n = a.size(); j < n; ++j, ++r) {for (int i = r + 1; i < n; ++i)if (!(a[i][j] == 0)) {swap(a[r], a[i]), det = -det;break;}if (a[r][j] == 0) return 0;det *= a[r][j];T inv = 1 / a[r][j];for (auto&& e : a[r]) e *= inv;for (int i = 0; i < n; ++i)if (i != r and !(a[i][j] == 0))for (int k = n; k-- > j;) a[i][k] -= a[r][k] * a[i][j];}return det;}int main() {cin.tie(nullptr)->sync_with_stdio(false);cout << fixed << setprecision(20);int n = scan();vector g(n, vector<bool>(n));for (int m = scan(); m--;) {int i = scan() - 1;int j = scan() - 1;g[i][j] = true;g[j][i] = true;}Dsu d(n);for (int j : Rep(n))for (int i : Rep(j))if (g[i][j]) d.unite(i, j);Mint ans = 1;for (int i : Rep(n))if (d.root(i) == i) {vector<int> idx;for (int j : Rep(n))if (d.same(i, j)) idx.push_back(j);vector mat(size(idx), vector<Mint>(size(idx)));for (int y : Rep(size(idx)))for (int x : Rep(y)) {int u = idx[x];int v = idx[y];if (g[u][v]) {--mat[x][y];--mat[y][x];++mat[x][x];++mat[y][y];}}mat.resize(size(idx) - 1);for (auto&& e : mat) e.resize(size(idx) - 1);ans *= determinant(mat);}if (d.num_ccs() == 1) {cout << "0\n";} else {vector<int> a;for (int i : Rep(n))if (d.root(i) == i) a.push_back(d.size(i));sort(ALL(a), greater{});while (a[1] != a.back()) a.pop_back();Mint coeff;if (a[0] == a[1]) {for (int x : a) {for (int y : a) coeff += x * y;coeff -= x * x;}coeff /= 2;} else {coeff += a[0] * accumulate(1 + ALL(a), 0);}ans *= coeff;int opt = n * n;for (int i : Rep(n))if (d.root(i) == i) opt -= d.size(i) * d.size(i);opt -= 2 * a[0] * a[1];cout << opt << '\n';}cout << ans << '\n';}