結果
問題 | No.1303 Inconvenient Kingdom |
ユーザー | LayCurse |
提出日時 | 2020-11-27 22:51:19 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 345 ms / 3,000 ms |
コード長 | 16,716 bytes |
コンパイル時間 | 3,113 ms |
コンパイル使用メモリ | 226,776 KB |
実行使用メモリ | 7,660 KB |
最終ジャッジ日時 | 2024-07-26 19:10:57 |
合計ジャッジ時間 | 8,469 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,812 KB |
testcase_02 | AC | 2 ms
6,812 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 3 ms
6,944 KB |
testcase_07 | AC | 3 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,940 KB |
testcase_09 | AC | 257 ms
6,940 KB |
testcase_10 | AC | 263 ms
6,940 KB |
testcase_11 | AC | 306 ms
6,944 KB |
testcase_12 | AC | 314 ms
6,944 KB |
testcase_13 | AC | 325 ms
6,944 KB |
testcase_14 | AC | 331 ms
6,940 KB |
testcase_15 | AC | 339 ms
6,944 KB |
testcase_16 | AC | 333 ms
6,940 KB |
testcase_17 | AC | 345 ms
6,940 KB |
testcase_18 | AC | 129 ms
7,660 KB |
testcase_19 | AC | 131 ms
6,944 KB |
testcase_20 | AC | 131 ms
6,944 KB |
testcase_21 | AC | 154 ms
6,940 KB |
testcase_22 | AC | 215 ms
6,944 KB |
testcase_23 | AC | 304 ms
6,940 KB |
testcase_24 | AC | 323 ms
6,940 KB |
testcase_25 | AC | 335 ms
7,660 KB |
testcase_26 | AC | 3 ms
6,944 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 3 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,944 KB |
testcase_31 | AC | 3 ms
7,660 KB |
testcase_32 | AC | 2 ms
7,660 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 2 ms
6,944 KB |
testcase_37 | AC | 2 ms
6,940 KB |
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (998244353U) void*wmem; char memarr[96000000]; template<class S, class T> inline S max_L(S a,T b){ return a>=b?a:b; } template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){ walloc1d(arr, x2-x1, mem); (*arr) -= x1; } template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){ sort(a, a+N); } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } inline int rd_int(void){ int x; rd(x); return x; } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(long long x){ int s=0; int m=0; char f[20]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class S, class T> inline S chmax(S &a, T b){ if(a<b){ a=b; } return a; } template<class T> struct Polynomial{ int d; int mem; T*c; Polynomial(){ mem = 1; c = new T[mem]; d = 0; c[0] = 0; } Polynomial(const Polynomial<T> &a){ int i; d = a.d; mem = d + 1; c = new T[mem]; for(i=(0);i<(d+1);i++){ c[i] = a.c[i]; } } ~Polynomial(){ delete [] c; } void expand(int z){ int i; T*cc; if(z <= mem){ return; } mem = (chmax(z, 2 * mem)); cc = new T[z]; for(i=(0);i<(d+1);i++){ cc[i] = c[i]; } delete [] c; c = cc; } inline void change(const int dg, const T cf){ expand(dg+1); while(d < dg){ c[++d] = 0; } c[dg] = cf; while(d && c[d]==0){ d--; } } inline int deg(void){ return d; } inline T coef(const int k){ if(k > d){ return 0; } return c[k]; } Polynomial<T>& operator=(const Polynomial<T> &a){ int i; d = a.d; mem = d + 1; c = new T[mem]; for(i=(0);i<(d+1);i++){ c[i] = a.c[i]; } return *this; } Polynomial<T>& operator+=(const Polynomial<T> &a){ int i; int k; k =max_L(d, a.d); expand(k+1); while(d < k){ c[++d] = 0; } for(i=(0);i<(a.d+1);i++){ c[i] += a.c[i]; } while(d && c[d]==0){ d--; } return *this; } Polynomial<T> operator+(const Polynomial<T> &a){ return Polynomial<T>(*this) += a; } Polynomial<T>& operator-=(const Polynomial<T> &a){ int i; int k; k =max_L(d, a.d); expand(k+1); while(d < k){ c[++d] = 0; } for(i=(0);i<(a.d+1);i++){ c[i] -= a.c[i]; } while(d && c[d]==0){ d--; } return *this; } Polynomial<T> operator-(const Polynomial<T> &a){ return Polynomial<T>(*this) -= a; } Polynomial<T>& operator*=(const Polynomial<T> &a){ int i; int j; int k; T*cc; void*mem = wmem; k = d + a.d; expand(k+1); walloc1d(&cc, k+1, &mem); for(i=(0);i<(k+1);i++){ cc[i] = 0; } for(i=(0);i<(d+1);i++){ for(j=(0);j<(a.d+1);j++){ cc[i+j] += c[i] * a.c[j]; } } for(i=(0);i<(k+1);i++){ c[i] = cc[i]; } d = k; while(d && c[d]==0){ d--; } return *this; } Polynomial<T> operator*(const Polynomial<T> &a){ return Polynomial<T>(*this) *= a; } Polynomial<T>& operator/=(const Polynomial<T> &a){ int i; int j; int k; T*cc; T e; void*mem = wmem; walloc1d(&cc, d-a.d, &mem); for(i=d; i>=a.d; i--){ cc[i-a.d] = e = c[i] / a.c[a.d]; for(j=(0);j<(a.d+1);j++){ c[i-j] -= e * a.c[a.d-j]; } } d -= a.d; for(i=(0);i<(d+1);i++){ c[i] = cc[i]; } return *this; } Polynomial<T> operator/(const Polynomial<T> &a){ return Polynomial<T>(*this) /= a; } Polynomial<T>& operator%=(const Polynomial<T> &a){ int i; int j; int k; T*cc; T e; void*mem = wmem; walloc1d(&cc, d-a.d, &mem); for(i=d; i>=a.d; i--){ cc[i-a.d] = e = c[i] / a.c[a.d]; for(j=(0);j<(a.d+1);j++){ c[i-j] -= e * a.c[a.d-j]; } } while(d && c[d]==0){ d--; } return *this; } Polynomial<T> operator%(const Polynomial<T> &a){ return Polynomial<T>(*this) %= a; } Polynomial<T>& operator*=(const T &a){ int i; for(i=(0);i<(d+1);i++){ c[i] *= a; } while(d && c[d]==0){ d--; } return *this; } Polynomial<T> operator*(const T &a){ return Polynomial<T>(*this) *= a; } Polynomial<T>& operator/=(const T &a){ int i; for(i=(0);i<(d+1);i++){ c[i] /= a; } while(d && c[d]==0){ d--; } return *this; } Polynomial<T> operator/(const T &a){ return Polynomial<T>(*this) /= a; } inline T operator()(const T x){ int i; T res; res = 0; for(i=d;i>=0;i--){ res = res * x + c[i]; } return res; } } ; template<class T> Polynomial<T> operator*(const T a, const Polynomial<T> &b){ return Polynomial<T>(b)*=a; } struct unionFind{ int*d; int N; int M; inline void malloc(const int n){ d = (int*)std::malloc(n*sizeof(int)); M = n; } inline void malloc(const int n, const int fg){ d = (int*)std::malloc(n*sizeof(int)); M = n; if(fg){ init(n); } } inline void free(void){ std::free(d); } inline void walloc(const int n, void **mem=&wmem){ walloc1d(&d, n, mem); M = n; } inline void walloc(const int n, const int fg, void **mem=&wmem){ walloc1d(&d, n, mem); M = n; if(fg){ init(n); } } inline void init(const int n){ int i; N = n; for(i=(0);i<(n);i++){ d[i] = -1; } } inline void init(void){ init(M); } inline int get(int a){ int t = a; int k; while(d[t]>=0){ t=d[t]; } while(d[a]>=0){ k=d[a]; d[a]=t; a=k; } return a; } inline int connect(int a, int b){ if(d[a]>=0){ a=get(a); } if(d[b]>=0){ b=get(b); } if(a==b){ return 0; } if(d[a] < d[b]){ d[a] += d[b]; d[b] = a; } else{ d[b] += d[a]; d[a] = b; } return 1; } inline int operator()(int a){ return get(a); } inline int operator()(int a, int b){ return connect(a,b); } inline int& operator[](const int a){ return d[a]; } inline int size(int a){ a = get(a); return -d[a]; } inline int sizeList(int res[]){ int i; int sz=0; for(i=(0);i<(N);i++){ if(d[i]<0){ res[sz++] = -d[i]; } } return sz; } } ; template<class T> Polynomial<T> polationPoly_L(int n, T x[], T y[]){ int i; int j; T c; Polynomial<T> res; Polynomial<T> tmp; Polynomial<T> t1; tmp.change(0, 1); t1.change(1, 1); for(i=(0);i<(n);i++){ t1.change(0, -x[i]); tmp *= t1; } for(i=(0);i<(n);i++){ c = 1; for(j=(0);j<(n);j++){ if(j!=i){ c *= (x[i] - x[j]); } } c = y[i] / c; t1.change(0, -x[i]); res += c * tmp / t1; } return res; } int N; int mat[102][102]; int n; Modint m[102][102]; int sz; int lis[100]; Modint calc_det(void){ int i; int j; int k; Modint res = 1; Modint t; for(k=(0);k<(n);k++){ for(i=(k);i<(n);i++){ if(m[i][k] != 0){ break; } } if(i == n){ return 0; } if(i != k){ for(j=(k);j<(n);j++){ swap(m[k][j], m[i][j]); } } for(i=(k+1);i<(n);i++){ t = m[i][k] / m[k][k]; for(j=(k);j<(n);j++){ m[i][j] -= t * m[k][j]; } } } for(i=(0);i<(n);i++){ res *= m[i][i]; } return res; } int main(){ int tU__gIr_; wmem = memarr; int i; int j; int k; int x; int y; long long c; unionFind uf; long long res1 = 0; Modint res2 = 1; Modint tmp; Modint xx[105]; Modint arr[105]; Polynomial<Modint> f; rd(N); uf.walloc(N,1); int a2conNHc = rd_int(); for(tU__gIr_=(0);tU__gIr_<(a2conNHc);tU__gIr_++){ rd(i);i += (-1); rd(j);j += (-1); mat[i][j] = mat[j][i] = 1; uf(i,j); } for(k=(0);k<(N);k++){ n = 0; for(i=(0);i<(N);i++){ if(uf(i) == k){ lis[n++] = i; } } if(n<=1){ continue; } for(i=(0);i<(n);i++){ for(j=(0);j<(n);j++){ m[i][j] = -mat[lis[i]][lis[j]]; } } for(i=(0);i<(n);i++){ for(j=(0);j<(n);j++){ if(j!=i){ m[i][i] -= m[i][j]; } } } n--; res2 *= calc_det(); } sz = uf.sizeList(lis); sortA_L(sz, lis); if(sz >= 2){ x = lis[sz-2]; y = lis[sz-1]; c = 0; for(i=(0);i<(sz);i++){ for(j=(i+1);j<(sz);j++){ if(lis[i]==x && lis[j]==y){ c++; } } } res2 *= c *x * y; lis[sz-2] = x + y; sz--; } else{ tmp = res2; n = N; for(k=(0);k<(n+3);k++){ for(x=(0);x<(n);x++){ for(y=(0);y<(n);y++){ m[x][y] = -mat[x][y]; } } for(x=(0);x<(n);x++){ for(y=(0);y<(n);y++){ if(x!=y && mat[x][y]==0){ m[x][y] = -k; } } } for(x=(0);x<(n);x++){ for(y=(0);y<(n);y++){ if(x!=y){ m[x][x] -= m[x][y]; } } } n--; xx[k] = k; arr[k] = calc_det(); n++; } f =polationPoly_L(n+3, xx, arr); f =polationPoly_L(n+3, xx, arr); res2 = f.coef(1) + f.coef(0); } for(i=(0);i<(sz);i++){ res1 += (N - lis[i]) * lis[i]; } wt_L(res1); wt_L('\n'); wt_L(res2); wt_L('\n'); return 0; } // cLay version 20201123-1 // --- original code --- // #define MD 998244353 // int N, mat[102][102]; // // int n; // Modint m[102][102]; // // int sz, lis[100]; // // Modint calc_det(void){ // int i, j, k; // Modint res = 1, t; // // // wt("---"); // // wt(m(n,n)); // // rep(k,n){ // rep(i,k,n) if(m[i][k] != 0) break; // if(i == n) return 0; // if(i != k){ // rep(j,k,n) swap(m[k][j], m[i][j]); // } // rep(i,k+1,n){ // t = m[i][k] / m[k][k]; // rep(j,k,n) m[i][j] -= t * m[k][j]; // } // } // // // wt("+++"); // // wt(m(n,n)); // rep(i,n) res *= m[i][i]; // // wt("res",res); // return res; // } // // { // int i, j, k, x, y; // ll c; // unionFind uf; // ll res1 = 0; // Modint res2 = 1, tmp; // Modint xx[105], arr[105]; // Polynomial<Modint> f; // // rd(N); // uf.walloc(N,1); // REP(rd_int()){ // rd(i--, j--); // mat[i][j] = mat[j][i] = 1; // uf(i,j); // } // // rep(k,N){ // n = 0; // rep(i,N) if(uf(i) == k) lis[n++] = i; // if(n<=1) continue; // rep(i,n) rep(j,n) m[i][j] = -mat[lis[i]][lis[j]]; // rep(i,n) rep(j,n) if(j!=i) m[i][i] -= m[i][j]; // n--; // res2 *= calc_det(); // } // // sz = uf.sizeList(lis); // sortA(sz, lis); // if(sz >= 2){ // x = lis[sz-2]; // y = lis[sz-1]; // c = 0; // rep(i,sz) rep(j,i+1,sz) if(lis[i]==x && lis[j]==y) c++; // res2 *= c *x * y; // // lis[sz-2] = x + y; // sz--; // } else { // tmp = res2; // n = N; // rep(k,n+3){ // rep(x,n) rep(y,n) m[x][y] = -mat[x][y]; // rep(x,n) rep(y,n) if(x!=y && mat[x][y]==0) m[x][y] = -k; // rep(x,n) rep(y,n) if(x!=y) m[x][x] -= m[x][y]; // n--; // xx[k] = k; // arr[k] = calc_det(); // n++; // } // f = polationPoly(n+3, xx, arr); // // wt(res2); // // rep(k,n+3) wt(k,arr[k],f.coef(k)); // f = polationPoly(n+3, xx, arr); // res2 = f.coef(1) + f.coef(0); // } // rep(i,sz) res1 += (N - lis[i]) * lis[i]; // // wtLn(res1, res2); // }