結果
問題 | No.1303 Inconvenient Kingdom |
ユーザー | chineristAC |
提出日時 | 2020-11-27 23:16:15 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,149 bytes |
コンパイル時間 | 391 ms |
コンパイル使用メモリ | 82,216 KB |
実行使用メモリ | 78,004 KB |
最終ジャッジ日時 | 2024-07-26 19:33:40 |
合計ジャッジ時間 | 4,003 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 41 ms
54,012 KB |
testcase_01 | AC | 40 ms
54,672 KB |
testcase_02 | WA | - |
testcase_03 | AC | 41 ms
54,440 KB |
testcase_04 | AC | 50 ms
62,416 KB |
testcase_05 | AC | 54 ms
63,948 KB |
testcase_06 | AC | 58 ms
65,808 KB |
testcase_07 | AC | 62 ms
67,616 KB |
testcase_08 | AC | 63 ms
68,728 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 114 ms
78,004 KB |
testcase_27 | AC | 107 ms
77,768 KB |
testcase_28 | AC | 108 ms
77,568 KB |
testcase_29 | AC | 47 ms
60,336 KB |
testcase_30 | AC | 53 ms
63,160 KB |
testcase_31 | AC | 52 ms
63,268 KB |
testcase_32 | AC | 52 ms
62,880 KB |
testcase_33 | AC | 53 ms
64,160 KB |
testcase_34 | AC | 40 ms
53,864 KB |
testcase_35 | WA | - |
testcase_36 | AC | 53 ms
63,244 KB |
testcase_37 | AC | 51 ms
62,032 KB |
ソースコード
def det(G, mod): N = len(G) res = 1 for i in range(N): for h in range(i, N): if G[h][i]: break if i != h: G[i], G[h] = G[h][:], G[i][:] gii = G[i][i] res = res*gii%mod giiv = pow(gii, mod-2, mod) for w in range(i, N): G[i][w] = G[i][w]*giiv%mod for j in range(i+1, N): gji = G[j][i] if gji: for w in range(i, N): G[j][w] = (G[j][w]-gji*G[i][w])%mod return res class UnionFindVerSize(): def __init__(self, N): self._parent = [n for n in range(0, N)] self._size = [1] * N self.group = N def find_root(self, x): if self._parent[x] == x: return x self._parent[x] = self.find_root(self._parent[x]) stack = [x] while self._parent[stack[-1]]!=stack[-1]: stack.append(self._parent[stack[-1]]) for v in stack: self._parent[v] = stack[-1] return self._parent[x] def unite(self, x, y): gx = self.find_root(x) gy = self.find_root(y) if gx == gy: return self.group -= 1 if self._size[gx] < self._size[gy]: self._parent[gx] = gy self._size[gy] += self._size[gx] else: self._parent[gy] = gx self._size[gx] += self._size[gy] def get_size(self, x): return self._size[self.find_root(x)] def is_same_group(self, x, y): return self.find_root(x) == self.find_root(y) N,M = map(int,input().split()) edge = [tuple(map(lambda x:int(x)-1,input().split())) for i in range(M)] uf = UnionFindVerSize(N) for u,v in edge: uf.unite(u,v) V = [[] for i in range(N)] E = [[] for i in range(N)] for v in range(N): V[uf.find_root(v)].append(v) for u,v in edge: E[uf.find_root(u)].append((u,v)) #print(V) #print(E) if uf.group!=1: res = 1 mod = 998244353 for root in range(N): if V[root]: idx = {e:i for i,e in enumerate(V[root])} #print(idx,root,E[root]) G = [[0 for j in range(len(V[root]))] for i in range(len(V[root]))] for u,v in E[root]: uidx,vidx = idx[u],idx[v] #print(uidx,vidx) G[uidx][uidx] += 1 G[vidx][vidx] += 1 G[uidx][vidx] -= 1 G[vidx][uidx] -= 1 G = [[G[i][j] for j in range(1,len(V[root]))] for i in range(1,len(V[root]))] #print(det(G,mod)) res *= det(G,mod) res %= mod add = 0 M = 0 for i in range(N): for j in range(i+1,N): v1,v2 = len(V[i]),len(V[j]) if v1*v2==0: continue if v1*(N-v1) + v2*(N-v2) - (v1+v2)*(N-v1-v2) > M: M = v1*(N-v1) + v2*(N-v2) - (v1+v2)*(N-v1-v2) add = 0 if v1*(N-v1) + v2*(N-v2) - (v1+v2)*(N-v1-v2) == M: add += v1*v2 res *= add res %= mod mini = -M for i in range(N): mini += len(V[i]) * (N - len(V[i])) print(mini) print(res)