結果

問題 No.1300 Sum of Inversions
ユーザー iiljjiiljj
提出日時 2020-11-27 23:36:32
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 363 ms / 2,000 ms
コード長 16,625 bytes
コンパイル時間 2,793 ms
コンパイル使用メモリ 224,044 KB
実行使用メモリ 31,688 KB
最終ジャッジ日時 2024-09-13 01:11:57
合計ジャッジ時間 11,888 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,812 KB
testcase_03 AC 269 ms
28,268 KB
testcase_04 AC 250 ms
27,968 KB
testcase_05 AC 202 ms
18,592 KB
testcase_06 AC 311 ms
29,056 KB
testcase_07 AC 295 ms
28,568 KB
testcase_08 AC 335 ms
30,872 KB
testcase_09 AC 324 ms
30,856 KB
testcase_10 AC 162 ms
17,628 KB
testcase_11 AC 166 ms
17,592 KB
testcase_12 AC 253 ms
28,012 KB
testcase_13 AC 255 ms
27,752 KB
testcase_14 AC 363 ms
31,648 KB
testcase_15 AC 318 ms
30,768 KB
testcase_16 AC 277 ms
28,320 KB
testcase_17 AC 160 ms
17,508 KB
testcase_18 AC 184 ms
18,028 KB
testcase_19 AC 217 ms
27,324 KB
testcase_20 AC 236 ms
27,376 KB
testcase_21 AC 225 ms
27,320 KB
testcase_22 AC 213 ms
18,592 KB
testcase_23 AC 299 ms
28,908 KB
testcase_24 AC 213 ms
18,652 KB
testcase_25 AC 175 ms
17,948 KB
testcase_26 AC 177 ms
17,860 KB
testcase_27 AC 196 ms
18,400 KB
testcase_28 AC 337 ms
31,120 KB
testcase_29 AC 231 ms
27,352 KB
testcase_30 AC 321 ms
30,796 KB
testcase_31 AC 201 ms
18,620 KB
testcase_32 AC 219 ms
18,900 KB
testcase_33 AC 23 ms
6,944 KB
testcase_34 AC 36 ms
6,940 KB
testcase_35 AC 176 ms
31,600 KB
testcase_36 AC 180 ms
31,688 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region Head */

#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;

#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define PERM(c)                                                                                                        \
    sort(ALL(c));                                                                                                      \
    for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))

#define endl '\n'
#define sqrt sqrtl
#define floor floorl
#define log2 log2l

constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
// constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;

template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
    for (T &x : vec) is >> x;
    return is;
}
template <typename T> ostream &operator<<(ostream &os, vc<T> &vec) { // vector 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}
template <typename T> ostream &operator>>(ostream &os, vc<T> &vec) { // vector 出力 (inline)
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
    return os;
}

template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
    is >> pair_var.first >> pair_var.second;
    return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, pair<T, U> &pair_var) { // pair 出力
    os << "(" << pair_var.first << ", " << pair_var.second << ")";
    return os;
}

// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, T &map_var) {
    os << "{";
    REPI(itr, map_var) {
        os << *itr;
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, map<T, U> &map_var) { return out_iter(os, map_var); }
template <typename T, typename U> ostream &operator<<(ostream &os, um<T, U> &map_var) {
    os << "{";
    REPI(itr, map_var) {
        auto [key, value] = *itr;
        os << "(" << key << ", " << value << ")";
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, pq<T> &pq_var) {
    pq<T> pq_cp(pq_var);
    os << "{";
    if (!pq_cp.empty()) {
        os << pq_cp.top(), pq_cp.pop();
        while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
    }
    return os << "}";
}

void pprint() { cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&... tail) {
    cout << head;
    if (sizeof...(Tail) > 0) cout << ' ';
    pprint(move(tail)...);
}

// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) {
    DUMPOUT << head;
    if (sizeof...(Tail) > 0) DUMPOUT << ", ";
    dump_func(move(tail)...);
}

// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
    if (comp(xmax, x)) {
        xmax = x;
        return true;
    }
    return false;
}

// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
    if (comp(x, xmin)) {
        xmin = x;
        return true;
    }
    return false;
}

// ローカル用
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif

#ifdef DEBUG_
#define DEB
#define dump(...)                                                                                                      \
    DUMPOUT << "  " << string(#__VA_ARGS__) << ": "                                                                    \
            << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl                                        \
            << "    ",                                                                                                 \
        dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif

#define VAR(type, ...)                                                                                                 \
    type __VA_ARGS__;                                                                                                  \
    cin >> __VA_ARGS__;

template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }

struct AtCoderInitialize {
    static constexpr int IOS_PREC = 15;
    static constexpr bool AUTOFLUSH = false;
    AtCoderInitialize() {
        ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
        cout << fixed << setprecision(IOS_PREC);
        if (AUTOFLUSH) cout << unitbuf;
    }
} ATCODER_INITIALIZE;

void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { cout << (p ? "YES" : "NO") << endl; }

/* #endregion */

// #include <atcoder/all>
// using namespace atcoder;

/* #region mint */

// 自動で MOD を取る整数
struct mint {
    ll x;
    mint(ll x = 0) : x((x % MOD + MOD) % MOD) {}
    mint &operator+=(const mint a) {
        if ((x += a.x) >= MOD) x -= MOD;
        return *this;
    }
    mint &operator-=(const mint a) {
        if ((x += MOD - a.x) >= MOD) x -= MOD;
        return *this;
    }
    mint &operator*=(const mint a) {
        (x *= a.x) %= MOD;
        return *this;
    }
    mint operator+(const mint a) const {
        mint res(*this);
        return res += a;
    }
    mint operator-(const mint a) const {
        mint res(*this);
        return res -= a;
    }
    mint operator*(const mint a) const {
        mint res(*this);
        return res *= a;
    }
    // O(log(t))
    mint pow_rec(ll t) const {
        if (!t) return 1;
        mint a = pow(t >> 1); // ⌊t/2⌋ 乗
        a *= a;               // ⌊t/2⌋*2 乗
        if (t & 1)            // ⌊t/2⌋*2 == t-1 のとき
            a *= *this;       // ⌊t/2⌋*2+1 乗 => t 乗
        return a;
    }

    mint pow(ll t) const {
        mint a(*this);
        mint res = 1;
        while (t) {
            if (t & 1) res *= a;
            t >>= 1, a *= a;
        }
        return res;
    }

    // for prime mod
    mint inv_prime() const {
        return pow(MOD - 2); // オイラーの定理から, x^(-1) ≡ x^(p-2)
    }
    mint inv() const {
        ll a = this->x, b = MOD, u = 1, v = 0, t;
        mint res;
        while (b) {
            t = a / b;
            a -= t * b;
            swap(a, b);
            u -= t * v;
            swap(u, v);
        }
        if (u < 0) u += MOD;
        res = u;
        return res;
    }
    mint &operator/=(const mint a) { return (*this) *= a.inv(); }
    mint operator/(const mint a) const {
        mint res(*this);
        return res /= a;
    }
    bool operator==(const mint a) const { return this->x == a.x; }
    bool operator==(const ll a) const { return this->x == a; }

    // mint 入力
    friend istream &operator>>(istream &is, mint &x) {
        is >> x.x;
        return is;
    }

    // mint 出力
    friend ostream &operator<<(ostream &os, mint x) {
        os << x.x;
        return os;
    }
};

/* #endregion */

/* #region CoordCompress1D */

// 1次元座圧
class CoordCompress1D {
    um<ll, ll> coord2zipped; // キーが座標値
    vll zipped2coord;        // 各要素が座標値
    ll sz;

  public:
    CoordCompress1D() {}
    CoordCompress1D(vll coords) {
        sort(ALL(coords));
        UNIQ(coords);
        sz = SIZE(coords);
        zipped2coord = coords;
        REP(i, 0, sz) coord2zipped[coords[i]] = i;
    }
    // 座標の圧縮(コンストラクタに与えた座標限定)
    ll zip(ll coord) { return coord2zipped[coord]; }
    ll unzip(ll zipped) { return zipped2coord[zipped]; }

    // coord 以上の最小の座標値を返す
    ll coord_geq(ll coord) {
        auto it = lower_bound(ALL(zipped2coord), coord);
        if (it != zipped2coord.end()) return *it;
        return INF;
    }

    // coord より大きいの最小の座標値を返す
    ll coord_gt(ll coord) {
        auto it = upper_bound(ALL(zipped2coord), coord);
        if (it != zipped2coord.end()) return *it;
        return INF;
    }

    // coord 以下の最小の座標値を返す
    ll coord_leq(ll coord) {
        auto rit = lower_bound(zipped2coord.rbegin(), zipped2coord.rend(), coord,
                               [](ll const lhs, ll const rhs) { return lhs > rhs; });
        if (rit != zipped2coord.rend()) return *rit;
        return -INF;
    }

    // coord 未満の最小の座標値を返す
    ll coord_lt(ll coord) {
        auto rit = upper_bound(zipped2coord.rbegin(), zipped2coord.rend(), coord,
                               [](ll const lhs, ll const rhs) { return lhs > rhs; });
        if (rit != zipped2coord.rend()) return *rit;
        return -INF;
    }

    ll size() { return sz; }
};

/* #endregion */

/* #region SegTree */

template <typename T> // T: 要素
struct SegmentTree {
    using F = function<T(T, T)>; // 要素と要素をマージする関数.max とか.

    ll n;  // 木のノード数
    ll nn; // 外から見た要素数
    F f; // 区間クエリで使う演算,結合法則を満たす演算.区間最大値のクエリを投げたいなら max 演算.
    T ti; // 値配列の初期値.演算 f に関する単位元.区間最大値なら単位元は 0. (a>0 なら max(a,0)=max(0,a)=a)
    vc<T> dat; // 1-indexed 値配列 (index は木の根から順に 1 | 2 3 | 4 5 6 7 | 8 9 10 11 12 13 14 15 | ...)

    // コンストラクタ.
    SegmentTree() {}
    // コンストラクタ.
    SegmentTree(F f, T ti) : f(f), ti(ti) {}

    // 指定要素数のセグメント木を初期化する
    void init(ll n_) {
        nn = n_;
        n = 1;
        while (n < n_) n <<= 1;
        dat.assign(n << 1, ti);
    }

    // ベクトルからセグメント木を構築する
    void build(const vc<T> &v) {
        ll n_ = v.size();
        init(n_);
        REP(i, 0, n_) dat[n + i] = v[i];
        REPR(i, n - 1, 1) dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
    }

    // インデックス k の要素の値を x にする.
    void set_val(ll k, T x) {
        dat[k += n] = x;
        while (k >>= 1) dat[k] = f(dat[(k << 1) | 0], dat[(k << 1) | 1]); // 上へ登って更新していく
    }

    // インデックス k の要素の値を取得する.
    T get_val(ll k) { return dat[k + n]; }

    // 半開区間 [a, b) に対するクエリを実行する
    T query(ll a, ll b) {
        if (a >= b) return ti;
        // assert(a<b)

        T vl = ti, vr = ti;
        for (ll l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {
            if (l & 1) vl = f(vl, dat[l++]);
            if (r & 1) vr = f(dat[--r], vr);
        }
        return f(vl, vr);
    }

    // セグメント木上の二分探索
    template <typename C> int find(ll st, C &check, T &acc, ll k, ll l, ll r) {
        if (l + 1 == r) {
            acc = f(acc, dat[k]);
            return check(acc) ? k - n : -1;
        }
        ll m = (l + r) >> 1;
        if (m <= st) return find(st, check, acc, (k << 1) | 1, m, r);
        if (st <= l && !check(f(acc, dat[k]))) {
            acc = f(acc, dat[k]);
            return -1;
        }
        ll vl = find(st, check, acc, (k << 1) | 0, l, m);
        if (~vl) return vl;
        return find(st, check, acc, (k << 1) | 1, m, r);
    }

    // セグメント木上の二分探索.check(query(st, idx)) が真となる idx を返す.
    template <typename C> int find(ll st, C &check) {
        T acc = ti;
        return find(st, check, acc, 1, 0, n);
    }

    // セグメント木上の二分探索.
    // @param l 区間左端
    // @param check 条件
    // @return check(query(l,r)) が真となる最大の r(半開区間であることに注意).
    int max_right(int l, const function<bool(T)> &check) {
        assert(0 <= l && l <= nn);
        assert(check(ti));
        if (l == nn) return nn;
        l += n;
        T sm = ti;
        do {
            while (l % 2 == 0) l >>= 1;
            if (!check(f(sm, dat[l]))) {
                while (l < n) {
                    l = (2 * l);
                    if (check(f(sm, dat[l]))) {
                        sm = f(sm, dat[l]);
                        l++;
                    }
                }
                return l - n;
            }
            sm = f(sm, dat[l]);
            l++;
        } while ((l & -l) != l);
        return nn;
    }

    // セグメント木上の二分探索.
    // @param r 区間右端(半開区間であることに注意)
    // @param check 条件
    // @return check(query(l,r)) が真となる最小の l(半開区間であることに注意).
    int min_left(int r, const function<bool(T)> &check) {
        assert(0 <= r && r <= nn);
        assert(check(ti));
        if (r == 0) return 0;
        r += n;
        T sm = ti;
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!check(f(dat[r], sm))) {
                while (r < n) {
                    r = (2 * r + 1);
                    if (check(f(dat[r], sm))) {
                        sm = f(dat[r], sm);
                        r--;
                    }
                }
                return r + 1 - n;
            }
            sm = f(dat[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

    // セグ木の中身を標準出力する.
    void _dump() {
        REP(k, 0, nn) {
            T val = dat[k + n];
            cout << val << (k == nn - 1 ? '\n' : ' ');
        }
    }
};
/* #endregion */

// Problem
void solve() {
    VAR(ll, n); //
    vll a(n);
    cin >> a;

    CoordCompress1D cc(a);

    using T = pair<mint, mint>; // {sum, cnt}
    auto f = [](T a, T b) -> T {
        auto [a0, a1] = a;
        auto [b0, b1] = b;
        return {a0 + b0, a1 + b1};
    };
    SegmentTree<T> seg0(f, {0, 0});
    SegmentTree<T> seg1(f, {0, 0});
    seg0.init(cc.size());
    seg1.init(cc.size());

    mint ans = 0;
    REPR(i, n - 1, 0) {
        ll zipped = cc.zip(a[i]); // [0, sz-1]

        T cur0 = seg0.get_val(zipped);
        cur0.first += a[i];
        cur0.second += 1;
        seg0.set_val(zipped, cur0); // 自分を登録
        // seg0._dump();

        T cur1_0 = seg0.query(0, zipped); // 自分よりも小さい数の総和と個数
        cur1_0.first += mint(a[i]) * cur1_0.second;
        T cur1_1 = seg1.get_val(zipped);
        T cur1 = f(cur1_0, cur1_1);
        seg1.set_val(zipped, cur1); // 自分+自分より小さい数 を登録
        // seg1._dump();

        T cur2 = seg1.query(0, zipped); // 自分よりも小さい数で作られた和の総和と個数
        // dump(cur2);
        cur2.first += mint(a[i]) * cur2.second;
        ans += cur2.first;
        // dump(i, cur2, ans);
    }
    pprint(ans);
}

// entry point
int main() {
    solve();
    return 0;
}
0