結果

問題 No.1301 Strange Graph Shortest Path
ユーザー theory_and_metheory_and_me
提出日時 2020-11-28 00:28:01
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 202 ms / 3,000 ms
コード長 7,791 bytes
コンパイル時間 2,535 ms
コンパイル使用メモリ 223,468 KB
実行使用メモリ 39,532 KB
最終ジャッジ日時 2024-07-26 21:24:20
合計ジャッジ時間 9,048 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 142 ms
39,004 KB
testcase_03 AC 117 ms
34,872 KB
testcase_04 AC 181 ms
37,828 KB
testcase_05 AC 125 ms
38,480 KB
testcase_06 AC 162 ms
35,240 KB
testcase_07 AC 149 ms
37,200 KB
testcase_08 AC 121 ms
35,276 KB
testcase_09 AC 130 ms
33,572 KB
testcase_10 AC 118 ms
34,724 KB
testcase_11 AC 148 ms
36,288 KB
testcase_12 AC 155 ms
36,316 KB
testcase_13 AC 131 ms
38,588 KB
testcase_14 AC 157 ms
33,732 KB
testcase_15 AC 129 ms
34,520 KB
testcase_16 AC 177 ms
37,848 KB
testcase_17 AC 154 ms
39,532 KB
testcase_18 AC 141 ms
35,980 KB
testcase_19 AC 138 ms
35,620 KB
testcase_20 AC 157 ms
34,236 KB
testcase_21 AC 151 ms
37,992 KB
testcase_22 AC 181 ms
35,148 KB
testcase_23 AC 136 ms
38,948 KB
testcase_24 AC 174 ms
35,012 KB
testcase_25 AC 168 ms
37,940 KB
testcase_26 AC 149 ms
36,424 KB
testcase_27 AC 136 ms
36,336 KB
testcase_28 AC 126 ms
37,992 KB
testcase_29 AC 202 ms
36,996 KB
testcase_30 AC 147 ms
37,544 KB
testcase_31 AC 162 ms
37,392 KB
testcase_32 AC 2 ms
5,376 KB
testcase_33 AC 99 ms
32,708 KB
testcase_34 AC 143 ms
39,408 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost = cost;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

using namespace std;
using namespace atcoder;

#define REP(i,n) for(ll i=0;i<(ll)n;i++)
#define dump(x)  cerr << "Line " << __LINE__ << ": " <<  #x << " = " << (x) << "\n";
#define spa << " " <<
#define fi first
#define se second
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()

using ld = long double;
using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;

template<typename T> using V = vector<T>;
template<typename T> using P = pair<T, T>;
template<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }
template<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }
template<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;}
template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }
template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;}
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;

template <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());}
template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }
void fail() { cout << -1 << '\n'; exit(0); }
inline int popcount(const int x) { return __builtin_popcount(x); }
inline int popcount(const ll x) { return __builtin_popcountll(x); }
template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<"\n";}};
template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0];
for(ll i=1;i<n;i++)cerr spa v[i];
cerr<<"\n";};

const ll INF = (1ll<<62);
// const ld EPS   = 1e-10;
// const ld PI    = acos(-1.0);
const ll mod = (int)1e9 + 7;
//const ll mod = 998244353;

int main(){

    ll N, M;
    cin >> N >> M;
    V<ll> u(M), v(M), c(M), d(M);
    REP(i, M) cin >> u[i] >> v[i] >> c[i] >> d[i];
    REP(i, M) u[i]--, v[i]--;

    mcf_graph<ll, ll> G(N);
    REP(i, M){
        G.add_edge(u[i], v[i], 1, c[i]);
        G.add_edge(u[i], v[i], 1, d[i]);
        G.add_edge(v[i], u[i], 1, c[i]);
        G.add_edge(v[i], u[i], 1, d[i]);
    }    

    cout << G.flow(0, N-1, 2).second << endl;

    return 0;
}
0