結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | theory_and_me |
提出日時 | 2020-11-28 00:28:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 202 ms / 3,000 ms |
コード長 | 7,791 bytes |
コンパイル時間 | 2,535 ms |
コンパイル使用メモリ | 223,468 KB |
実行使用メモリ | 39,532 KB |
最終ジャッジ日時 | 2024-07-26 21:24:20 |
合計ジャッジ時間 | 9,048 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 142 ms
39,004 KB |
testcase_03 | AC | 117 ms
34,872 KB |
testcase_04 | AC | 181 ms
37,828 KB |
testcase_05 | AC | 125 ms
38,480 KB |
testcase_06 | AC | 162 ms
35,240 KB |
testcase_07 | AC | 149 ms
37,200 KB |
testcase_08 | AC | 121 ms
35,276 KB |
testcase_09 | AC | 130 ms
33,572 KB |
testcase_10 | AC | 118 ms
34,724 KB |
testcase_11 | AC | 148 ms
36,288 KB |
testcase_12 | AC | 155 ms
36,316 KB |
testcase_13 | AC | 131 ms
38,588 KB |
testcase_14 | AC | 157 ms
33,732 KB |
testcase_15 | AC | 129 ms
34,520 KB |
testcase_16 | AC | 177 ms
37,848 KB |
testcase_17 | AC | 154 ms
39,532 KB |
testcase_18 | AC | 141 ms
35,980 KB |
testcase_19 | AC | 138 ms
35,620 KB |
testcase_20 | AC | 157 ms
34,236 KB |
testcase_21 | AC | 151 ms
37,992 KB |
testcase_22 | AC | 181 ms
35,148 KB |
testcase_23 | AC | 136 ms
38,948 KB |
testcase_24 | AC | 174 ms
35,012 KB |
testcase_25 | AC | 168 ms
37,940 KB |
testcase_26 | AC | 149 ms
36,424 KB |
testcase_27 | AC | 136 ms
36,336 KB |
testcase_28 | AC | 126 ms
37,992 KB |
testcase_29 | AC | 202 ms
36,996 KB |
testcase_30 | AC | 147 ms
37,544 KB |
testcase_31 | AC | 162 ms
37,392 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 99 ms
32,708 KB |
testcase_34 | AC | 143 ms
39,408 KB |
ソースコード
#include <bits/stdc++.h> #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder using namespace std; using namespace atcoder; #define REP(i,n) for(ll i=0;i<(ll)n;i++) #define dump(x) cerr << "Line " << __LINE__ << ": " << #x << " = " << (x) << "\n"; #define spa << " " << #define fi first #define se second #define ALL(a) (a).begin(),(a).end() #define ALLR(a) (a).rbegin(),(a).rend() using ld = long double; using ll = long long; using ull = unsigned long long; using pii = pair<int, int>; using pll = pair<ll, ll>; using pdd = pair<ld, ld>; template<typename T> using V = vector<T>; template<typename T> using P = pair<T, T>; template<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); } template<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); } template<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;} template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;} struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; template <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());} template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; } void fail() { cout << -1 << '\n'; exit(0); } inline int popcount(const int x) { return __builtin_popcount(x); } inline int popcount(const ll x) { return __builtin_popcountll(x); } template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++) {cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<"\n";}}; template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0]; for(ll i=1;i<n;i++)cerr spa v[i]; cerr<<"\n";}; const ll INF = (1ll<<62); // const ld EPS = 1e-10; // const ld PI = acos(-1.0); const ll mod = (int)1e9 + 7; //const ll mod = 998244353; int main(){ ll N, M; cin >> N >> M; V<ll> u(M), v(M), c(M), d(M); REP(i, M) cin >> u[i] >> v[i] >> c[i] >> d[i]; REP(i, M) u[i]--, v[i]--; mcf_graph<ll, ll> G(N); REP(i, M){ G.add_edge(u[i], v[i], 1, c[i]); G.add_edge(u[i], v[i], 1, d[i]); G.add_edge(v[i], u[i], 1, c[i]); G.add_edge(v[i], u[i], 1, d[i]); } cout << G.flow(0, N-1, 2).second << endl; return 0; }