結果
問題 | No.1303 Inconvenient Kingdom |
ユーザー | NyaanNyaan |
提出日時 | 2020-11-28 01:01:54 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 67 ms / 3,000 ms |
コード長 | 56,561 bytes |
コンパイル時間 | 7,745 ms |
コンパイル使用メモリ | 359,816 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-26 21:36:10 |
合計ジャッジ時間 | 7,481 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 62 ms
5,376 KB |
testcase_10 | AC | 62 ms
5,376 KB |
testcase_11 | AC | 62 ms
5,376 KB |
testcase_12 | AC | 64 ms
5,376 KB |
testcase_13 | AC | 64 ms
5,376 KB |
testcase_14 | AC | 66 ms
5,376 KB |
testcase_15 | AC | 66 ms
5,376 KB |
testcase_16 | AC | 65 ms
5,376 KB |
testcase_17 | AC | 65 ms
5,376 KB |
testcase_18 | AC | 65 ms
5,376 KB |
testcase_19 | AC | 65 ms
5,376 KB |
testcase_20 | AC | 66 ms
5,376 KB |
testcase_21 | AC | 63 ms
5,376 KB |
testcase_22 | AC | 63 ms
5,376 KB |
testcase_23 | AC | 64 ms
5,376 KB |
testcase_24 | AC | 64 ms
5,376 KB |
testcase_25 | AC | 67 ms
5,376 KB |
testcase_26 | AC | 3 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 3 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
コンパイルメッセージ
main.cpp:381:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:373:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:365:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:354:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:349:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:342:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:335:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:327:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:316:1: warning: 'always_inline' function might not be inlinable [-Wattributes] main.cpp:311:1: warning: 'always_inline' function might not be inlinable [-Wattributes]
ソースコード
/** * date : 2020-11-28 01:01:48 */ #pragma region kyopro_template #define Nyaan_template #include <immintrin.h> #include <bits/stdc++.h> #define pb push_back #define eb emplace_back #define fi first #define se second #define each(x, v) for (auto &x : v) #define all(v) (v).begin(), (v).end() #define sz(v) ((int)(v).size()) #define mem(a, val) memset(a, val, sizeof(a)) #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define die(...) \ do { \ out(__VA_ARGS__); \ return; \ } while (0) using namespace std; using ll = long long; template <class T> using V = vector<T>; using vi = vector<int>; using vl = vector<long long>; using vvi = vector<vector<int>>; using vd = V<double>; using vs = V<string>; using vvl = vector<vector<long long>>; using P = pair<long long, long long>; using vp = vector<P>; using pii = pair<int, int>; using vpi = vector<pair<int, int>>; constexpr int inf = 1001001001; constexpr long long infLL = (1LL << 61) - 1; template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U> void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << " "; out(u...); } #ifdef NyaanDebug #define trc(...) \ do { \ cerr << #__VA_ARGS__ << " = "; \ dbg_out(__VA_ARGS__); \ } while (0) #define trca(v, N) \ do { \ cerr << #v << " = "; \ array_out(v, N); \ } while (0) #define trcc(v) \ do { \ cerr << #v << " = {"; \ each(x, v) { cerr << " " << x << ","; } \ cerr << "}" << endl; \ } while (0) template <typename T> void _cout(const T &c) { cerr << c; } void _cout(const int &c) { if (c == 1001001001) cerr << "inf"; else if (c == -1001001001) cerr << "-inf"; else cerr << c; } void _cout(const unsigned int &c) { if (c == 1001001001) cerr << "inf"; else cerr << c; } void _cout(const long long &c) { if (c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else if (c == -1001001001 || c == -((1LL << 61) - 1)) cerr << "-inf"; else cerr << c; } void _cout(const unsigned long long &c) { if (c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else cerr << c; } template <typename T, typename U> void _cout(const pair<T, U> &p) { cerr << "{ "; _cout(p.fi); cerr << ", "; _cout(p.se); cerr << " } "; } template <typename T> void _cout(const vector<T> &v) { int s = v.size(); cerr << "{ "; for (int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } "; } template <typename T> void _cout(const vector<vector<T>> &v) { cerr << "[ "; for (const auto &x : v) { cerr << endl; _cout(x); cerr << ", "; } cerr << endl << " ] "; } void dbg_out() { cerr << endl; } template <typename T, class... U> void dbg_out(const T &t, const U &... u) { _cout(t); if (sizeof...(u)) cerr << ", "; dbg_out(u...); } template <typename T> void array_out(const T &v, int s) { cerr << "{ "; for (int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } " << endl; } template <typename T> void array_out(const T &v, int H, int W) { cerr << "[ "; for (int i = 0; i < H; i++) { cerr << (i ? ", " : ""); array_out(v[i], W); } cerr << " ] " << endl; } #else #define trc(...) #define trca(...) #define trcc(...) #endif inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); } inline int lsb(unsigned long long a) { return __builtin_ctzll(a); } inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); } template <typename T> inline int getbit(T a, int i) { return (a >> i) & 1; } template <typename T> inline void setbit(T &a, int i) { a |= (1LL << i); } template <typename T> inline void delbit(T &a, int i) { a &= ~(1LL << i); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } template <typename T> int btw(T a, T x, T b) { return a <= x && x < b; } template <typename T, typename U> T ceil(T a, U b) { return (a + b - 1) / b; } constexpr long long TEN(int n) { long long ret = 1, x = 10; while (n) { if (n & 1) ret *= x; x *= x; n >>= 1; } return ret; } template <typename T> vector<T> mkrui(const vector<T> &v) { vector<T> ret(v.size() + 1); for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T = int> vector<T> mkiota(int N) { vector<T> ret(N); iota(begin(ret), end(ret), 0); return ret; } template <typename T> vector<int> mkinv(vector<T> &v) { vector<int> inv(v.size()); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; void solve(); int main() { solve(); } #pragma endregion using namespace std; using namespace std; using namespace std; __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i my128_mullo_epu32(const __m128i &a, const __m128i &b) { return _mm_mullo_epi32(a, b); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i my128_mulhi_epu32(const __m128i &a, const __m128i &b) { __m128i a13 = _mm_shuffle_epi32(a, 0xF5); __m128i b13 = _mm_shuffle_epi32(b, 0xF5); __m128i prod02 = _mm_mul_epu32(a, b); __m128i prod13 = _mm_mul_epu32(a13, b13); __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13), _mm_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_mul_128(const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) { return _mm_sub_epi32( _mm_add_epi32(my128_mulhi_epu32(a, b), m1), my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1)); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_add_128(const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_sub_128(const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(a, b); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i my256_mullo_epu32(const __m256i &a, const __m256i &b) { return _mm256_mullo_epi32(a, b); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i my256_mulhi_epu32(const __m256i &a, const __m256i &b) { __m256i a13 = _mm256_shuffle_epi32(a, 0xF5); __m256i b13 = _mm256_shuffle_epi32(b, 0xF5); __m256i prod02 = _mm256_mul_epu32(a, b); __m256i prod13 = _mm256_mul_epu32(a13, b13); __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13), _mm256_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_mul_256(const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) { return _mm256_sub_epi32( _mm256_add_epi32(my256_mulhi_epu32(a, b), m1), my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1)); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_add_256(const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_sub_256(const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(a, b); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } constexpr int SZ_FFT_BUF = 1 << 23; uint32_t buf1_[SZ_FFT_BUF] __attribute__((aligned(64))); uint32_t buf2_[SZ_FFT_BUF] __attribute__((aligned(64))); template <typename mint> struct NTT { static constexpr uint32_t get_pr() { uint32_t mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = pr, b = (mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % mod; a = a * a % mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++pr; } return pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; mint *buf1, *buf2; constexpr NTT() { setwy(level); buf1 = reinterpret_cast<mint *>(::buf1_); buf2 = reinterpret_cast<mint *>(::buf2_); } constexpr void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[0] = dy[0] = w[1] * w[1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } __attribute__((target("avx2"))) void ntt(mint *a, int n) { int k = n ? __builtin_ctz(n) : 0; if (k == 0) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); if (v < 8) { for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for (; j0 < v; j0 += 8, j1 += 8) { __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0, T1, m2, m0); __m256i najv = montgomery_sub_256(T0, T1, m2, m0); _mm256_storeu_si256((__m256i *)(a + j0), naj); _mm256_storeu_si256((__m256i *)(a + j1), najv); } } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { if (v == 1) { mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { ww = xx * xx, wx = ww * xx; mint t0 = a[jh + 0], t1 = a[jh + 1] * xx; mint t2 = a[jh + 2] * ww, t3 = a[jh + 3] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[jh + 0] = t0p2 + t1p3, a[jh + 1] = t0p2 - t1p3; a[jh + 2] = t0m2 + t1m3, a[jh + 3] = t0m2 - t1m3; xx *= dw[__builtin_ctz((jh += 4))]; } } else if (v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P2 = montgomery_add_128(T0, T2, m2, m0); const __m128i T1P3 = montgomery_add_128(T1, T3, m2, m0); const __m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0)); } } else { ww = xx * xx, wx = ww * xx; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i WX = _mm_set1_epi32(wx.a); const __m128i XX = _mm_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i MT1 = montgomery_mul_128(T1, XX, r, m1); const __m128i MT2 = montgomery_mul_128(T2, WW, r, m1); const __m128i MT3 = montgomery_mul_128(T3, WX, r, m1); const __m128i T0P2 = montgomery_add_128(T0, MT2, m2, m0); const __m128i T1P3 = montgomery_add_128(MT1, MT3, m2, m0); const __m128i T0M2 = montgomery_sub_128(T0, MT2, m2, m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(MT1, MT3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P2 = montgomery_add_256(T0, T2, m2, m0); const __m256i T1P3 = montgomery_add_256(T1, T3, m2, m0); const __m256i T0M2 = montgomery_sub_256(T0, T2, m2, m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(T1, T3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0)); } } else { ww = xx * xx, wx = ww * xx; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i WX = _mm256_set1_epi32(wx.a); const __m256i XX = _mm256_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i MT1 = montgomery_mul_256(T1, XX, r, m1); const __m256i MT2 = montgomery_mul_256(T2, WW, r, m1); const __m256i MT3 = montgomery_mul_256(T3, WX, r, m1); const __m256i T0P2 = montgomery_add_256(T0, MT2, m2, m0); const __m256i T1P3 = montgomery_add_256(MT1, MT3, m2, m0); const __m256i T0M2 = montgomery_sub_256(T0, MT2, m2, m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(MT1, MT3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } u <<= 2; v >>= 2; } } __attribute__((target("avx2"))) void intt(mint *a, int n, int normalize = true) { int k = n ? __builtin_ctz(n) : 0; if (k == 0) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; if (normalize) { a[0] *= mint(2).inverse(); a[1] *= mint(2).inverse(); } return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { if (v == 1) { mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { ww = xx * xx, yy = xx * imag; mint t0 = a[jh + 0], t1 = a[jh + 1]; mint t2 = a[jh + 2], t3 = a[jh + 3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[jh + 0] = t0p1 + t2p3, a[jh + 2] = (t0p1 - t2p3) * ww; a[jh + 1] = t0m1 + t2m3, a[jh + 3] = (t0m1 - t2m3) * ww; xx *= dy[__builtin_ctz(jh += 4)]; } } else if (v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0); const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0); const __m128i T0M1 = montgomery_sub_128(T0, T1, m2, m0); const __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2, T3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_sub_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M1, T2M3, m2, m0)); } } else { ww = xx * xx, yy = xx * imag; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i XX = _mm_set1_epi32(xx.a); const __m128i YY = _mm_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0); const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0); const __m128i T0M1 = montgomery_mul_128( montgomery_sub_128(T0, T1, m2, m0), XX, r, m1); __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2, T3, m2, m0), YY, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128( (__m128i *)(a + j2), montgomery_mul_128(montgomery_sub_128(T0P1, T2P3, m2, m0), WW, r, m1)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0)); _mm_storeu_si128( (__m128i *)(a + j3), montgomery_mul_128(montgomery_sub_128(T0M1, T2M3, m2, m0), WW, r, m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0); const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0); const __m256i T0M1 = montgomery_sub_256(T0, T1, m2, m0); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2, T3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_sub_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M1, T2M3, m2, m0)); } } else { ww = xx * xx, yy = xx * imag; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i XX = _mm256_set1_epi32(xx.a); const __m256i YY = _mm256_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0); const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0); const __m256i T0M1 = montgomery_mul_256( montgomery_sub_256(T0, T1, m2, m0), XX, r, m1); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2, T3, m2, m0), YY, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256( (__m256i *)(a + j2), montgomery_mul_256(montgomery_sub_256(T0P1, T2P3, m2, m0), WW, r, m1)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0)); _mm256_storeu_si256( (__m256i *)(a + j3), montgomery_mul_256(montgomery_sub_256(T0M1, T2M3, m2, m0), WW, r, m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } u >>= 4; v <<= 2; } if (k & 1) { v = 1 << (k - 1); if (v < 8) { for (int j = 0; j < v; ++j) { mint ajv = a[j] - a[j + v]; a[j] += a[j + v]; a[j + v] = ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for (; j0 < v; j0 += 8, j1 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0, T1, m2, m0); __m256i najv = montgomery_sub_256(T0, T1, m2, m0); _mm256_storeu_si256((__m256i *)(a + j0), naj); _mm256_storeu_si256((__m256i *)(a + j1), najv); } } } if (normalize) { mint invn = mint(n).inverse(); for (int i = 0; i < n; i++) a[i] *= invn; } } __attribute__((target("avx2"))) void inplace_multiply( int l1, int l2, int zero_padding = true) { int l = l1 + l2 - 1; int M = 4; while (M < l) M <<= 1; if (zero_padding) { for (int i = l1; i < M; i++) buf1_[i] = 0; for (int i = l2; i < M; i++) buf2_[i] = 0; } const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i N2 = _mm256_set1_epi32(mint::n2); for (int i = 0; i < l1; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = montgomery_mul_256(a, N2, r, m1); _mm256_storeu_si256((__m256i *)(buf1_ + i), b); } for (int i = 0; i < l2; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf2_ + i)); __m256i b = montgomery_mul_256(a, N2, r, m1); _mm256_storeu_si256((__m256i *)(buf2_ + i), b); } ntt(buf1, M); ntt(buf2, M); for (int i = 0; i < M; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = _mm256_loadu_si256((__m256i *)(buf2_ + i)); __m256i c = montgomery_mul_256(a, b, r, m1); _mm256_storeu_si256((__m256i *)(buf1_ + i), c); } intt(buf1, M, false); const __m256i INVM = _mm256_set1_epi32((mint(M).inverse()).a); for (int i = 0; i < l; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = montgomery_mul_256(a, INVM, r, m1); __m256i c = my256_mulhi_epu32(my256_mullo_epu32(b, r), m1); __m256i d = _mm256_and_si256(_mm256_cmpgt_epi32(c, m0), m1); __m256i e = _mm256_sub_epi32(d, c); _mm256_storeu_si256((__m256i *)(buf1_ + i), e); } } void ntt(vector<mint> &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; ntt(buf1, M); for (int i = 0; i < M; i++) a[i].a = buf1[i].a; } void intt(vector<mint> &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1, M, true); for (int i = 0; i < M; i++) a[i].a = buf1[i].a; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { if (a.size() == 0 && b.size() == 0) return vector<mint>{}; int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40) { vector<mint> s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } assert(l <= SZ_FFT_BUF); int M = 4; while (M < l) M <<= 1; for (int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a; for (int i = (int)a.size(); i < M; ++i) buf1[i].a = 0; for (int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a; for (int i = (int)b.size(); i < M; ++i) buf2[i].a = 0; ntt(buf1, M); ntt(buf2, M); for (int i = 0; i < M; ++i) buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a); intt(buf1, M, false); vector<mint> s(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] = buf1[i] * invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1, M); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) buf1[i] *= r, r *= zeta; ntt(buf1, M); a.resize(2 * M); for (int i = 0; i < M; i++) a[M + i].a = buf1[i].a; } }; using namespace std; template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { if (i * k > deg) return FPS(deg, mint(0)); mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ template <typename mint> void FormalPowerSeries<mint>::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT<mint>; } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=( const FormalPowerSeries<mint>& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries<mint>(ret.begin(), ret.end()); } template <typename mint> void FormalPowerSeries<mint>::ntt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this); } template <typename mint> void FormalPowerSeries<mint>::intt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->intt(*this); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { set_fft(); return static_cast<NTT<mint>*>(ntt_ptr)->pr; } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries<mint> f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { using fps = FormalPowerSeries<mint>; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min<int>(this->size(), m)); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } /** * @brief NTT mod用FPSライブラリ * @docs docs/fps/ntt-friendly-fps.md */ using namespace std; template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; using namespace std; template <typename T> struct Binomial { vector<T> fac_, finv_, inv_; Binomial(int MAX = 0) : fac_(MAX + 10), finv_(MAX + 10), inv_(MAX + 10) { assert(T::get_mod() != 0); MAX += 9; fac_[0] = finv_[0] = inv_[0] = 1; for (int i = 1; i <= MAX; i++) fac_[i] = fac_[i - 1] * i; finv_[MAX] = fac_[MAX].inverse(); for (int i = MAX - 1; i > 0; i--) finv_[i] = finv_[i + 1] * (i + 1); for (int i = 1; i <= MAX; i++) inv_[i] = finv_[i] * fac_[i - 1]; } void extend() { int n = fac_.size(); T fac = fac_.back() * n; T inv = (-inv_[T::get_mod() % n]) * (T::get_mod() / n); T finv = finv_.back() * inv; fac_.push_back(fac); finv_.push_back(finv); inv_.push_back(inv); } T fac(int i) { while (i >= (int)fac_.size()) extend(); return fac_[i]; } T finv(int i) { while (i >= (int)finv_.size()) extend(); return finv_[i]; } T inv(int i) { while (i >= (int)inv_.size()) extend(); return inv_[i]; } T C(int n, int r) { if (n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } T C_naive(int n, int r) { if (n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < r || r < 0) return T(0); return fac(n) * finv(n - r); } T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; using mint = LazyMontgomeryModInt<998244353>; Binomial<mint> C; using vm = vector<mint>; using vvm = vector<vm>; using fps = FormalPowerSeries<mint>; using namespace std; struct UnionFind { vector<int> data; UnionFind(int N) : data(N, -1) {} int find(int k) { return data[k] < 0 ? k : data[k] = find(data[k]); } int unite(int x, int y) { if ((x = find(x)) == (y = find(y))) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; return true; } // f ... merge function template<typename F> int unite(int x, int y,const F &f) { if ((x = find(x)) == (y = find(y))) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; f(x, y); return true; } int size(int k) { return -data[find(k)]; } int same(int x, int y) { return find(x) == find(y); } }; /** * @brief Union Find(Disjoint Set Union) * @docs docs/data-structure/union-find.md */ using namespace std; using namespace std; template <class T> struct Matrix { vector<vector<T> > A; Matrix() {} Matrix(int n, int m) : A(n, vector<T>(m, T())) {} Matrix(int n) : A(n, vector<T>(n, T())){}; int H() const { return A.size(); } int W() const { return A[0].size(); } int size() const { return A.size(); } inline const vector<T> &operator[](int k) const { return A[k]; } inline vector<T> &operator[](int k) { return A[k]; } static Matrix I(int n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { int n = H(), m = W(); assert(n == B.H() && m == B.W()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { int n = H(), m = W(); assert(n == B.H() && m == B.W()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { int n = H(), m = B.W(), p = W(); assert(p == B.H()); vector<vector<T> > C(n, vector<T>(m, 0)); for (int i = 0; i < n; i++) for (int k = 0; k < p; k++) for (int j = 0; j < m; j++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(H()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, const Matrix &p) { int n = p.H(), m = p.W(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() const { Matrix B(*this); assert(H() == W()); T ret = 1; for (int i = 0; i < H(); i++) { int idx = -1; for (int j = i; j < W(); j++) { if (B[j][i] != T(0)) { idx = j; break; } } if (idx == -1) return T(0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T inv = T(1) / B[i][i]; for (int j = 0; j < W(); j++) { B[i][j] *= inv; } for (int j = i + 1; j < H(); j++) { T a = B[j][i]; if (a == T(0)) continue; for (int k = i; k < W(); k++) { B[j][k] -= B[i][k] * a; } } } return ret; } }; template <typename T> struct MatrixTree { int n; Matrix<T> m; MatrixTree(int _n) : n(_n), m(_n) { assert(n > 0); } void add(int i, int j, const T& x) { if (i < n) m[i][i] += x; if (j < n) m[j][j] += x; if (i < n and j < n) { m[i][j] -= x; m[j][i] -= x; } } Matrix<T> get() const { return m; } }; using namespace std; using namespace std; using namespace std; template <typename mint> struct ProductTree { using fps = FormalPowerSeries<mint>; const vector<mint> &xs; vector<fps> buf; int N, xsz; vector<int> l, r; ProductTree(const vector<mint> &xs_) : xs(xs_), xsz(xs.size()) { N = 1; while (N < (int)xs.size()) N *= 2; buf.resize(2 * N); l.resize(2 * N, xs.size()); r.resize(2 * N, xs.size()); fps::set_fft(); if (fps::ntt_ptr == nullptr) build(); else build_ntt(); } void build() { for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i], 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else buf[i] = buf[(i << 1) | 0] * buf[(i << 1) | 1]; } } void build_ntt() { fps f; f.reserve(N * 2); for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i] + 1, -xs[i] - 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else if (buf[(i << 1) | 0].size() == buf[(i << 1) | 1].size()) { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.ntt_doubling(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } else { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.intt(); f.resize(buf[i].size(), mint(0)); f.ntt(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } } for (int i = 0; i < 2 * N; i++) { buf[i].intt(); buf[i].shrink(); } } }; template <typename mint> vector<mint> InnerMultipointEvaluation(const FormalPowerSeries<mint> &f, const vector<mint> &xs, const ProductTree<mint> &ptree) { using fps = FormalPowerSeries<mint>; vector<mint> ret; ret.reserve(xs.size()); auto rec = [&](auto self, fps a, int idx) { if (ptree.l[idx] == ptree.r[idx]) return; a %= ptree.buf[idx]; if ((int)a.size() <= 64) { for (int i = ptree.l[idx]; i < ptree.r[idx]; i++) ret.push_back(a.eval(xs[i])); return; } self(self, a, (idx << 1) | 0); self(self, a, (idx << 1) | 1); }; rec(rec, f, 1); return ret; } template <typename mint> vector<mint> MultipointEvaluation(const FormalPowerSeries<mint> &f, const vector<mint> &xs) { return InnerMultipointEvaluation(f, xs, ProductTree<mint>(xs)); } template <class mint> FormalPowerSeries<mint> PolynomialInterpolation(const vector<mint> &xs, const vector<mint> &ys) { using fps = FormalPowerSeries<mint>; assert(xs.size() == ys.size()); ProductTree<mint> ptree(xs); fps w = ptree.buf[1].diff(); vector<mint> vs = InnerMultipointEvaluation<mint>(w, xs, ptree); auto rec = [&](auto self, int idx) -> fps { if (idx >= ptree.N) { if (idx - ptree.N < (int)xs.size()) return {ys[idx - ptree.N] / vs[idx - ptree.N]}; else return {mint(1)}; } if (ptree.buf[idx << 1 | 0].empty()) return {}; else if (ptree.buf[idx << 1 | 1].empty()) return self(self, idx << 1 | 0); return self(self, idx << 1 | 0) * ptree.buf[idx << 1 | 1] + self(self, idx << 1 | 1) * ptree.buf[idx << 1 | 0]; }; return rec(rec, 1); } template <typename mint> FormalPowerSeries<mint> PolyMatrixDet( const Matrix<FormalPowerSeries<mint>> &m) { int N = m.size(); int deg = 0; for (int i = 0; i < N; ++i) deg += max<int>(1, m[i][i].size()) - 1; vector<mint> xs(deg + 1); vector<mint> ys(deg + 1); Matrix<mint> M(N); for (int x = 0; x <= deg; x++) { xs[x] = x; for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) M[i][j] = m[i][j].eval(x); ys[x] = M.determinant(); } return PolynomialInterpolation<mint>(xs, ys); } int a[114][514]; void solve() { ini(N, M); UnionFind uf(N); rep(i, M) { ini(u, v); --u, --v; a[u][v] = a[v][u] = 1; uf.unite(u, v); } using P = pair<mint, int>; vvi memo(N); rep(i, N) memo[uf.find(i)].push_back(i); V<P> v; rep(i, N) { if (uf.find(i) == i) { if (sz(memo[i]) == 1) { v.emplace_back(1, 1); continue; } MatrixTree<mint> m(sz(memo[i]) - 1); rep(j, sz(memo[i])) rep(k, j) { if (a[memo[i][j]][memo[i][k]]) m.add(j, k, 1); } v.emplace_back(m.get().determinant(), sz(memo[i])); } } if (sz(v) == 1) { out(0); MatrixTree<fps> m(N - 1); rep(i, N) rep(j, i) { if (a[i][j]) m.add(i, j, fps{0, 1}); else m.add(i, j, fps{1}); } auto f = PolyMatrixDet(m.get()); out(f[N - 1] + f[N - 2]); return; } sort(all(v), [](P a, P b) { return a.second > b.second; }); int n1 = v[0].second, n2 = v[1].second; ll h = -n1 * n2 * 2; mint ans = 1; each(p, v) ans *= p.first; mint sm = 0; rep(j, sz(v)) rep(i, j) { h += v[i].second * v[j].second * 2; if (v[i].second == n1 and v[j].second == n2) { sm += v[i].second * v[j].second; } } out(h); out(ans * sm); }