結果

問題 No.1300 Sum of Inversions
ユーザー rokahikou1rokahikou1
提出日時 2020-11-28 01:42:31
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 154 ms / 2,000 ms
コード長 5,283 bytes
コンパイル時間 2,201 ms
コンパイル使用メモリ 181,164 KB
実行使用メモリ 12,672 KB
最終ジャッジ日時 2024-09-12 21:42:22
合計ジャッジ時間 7,070 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 112 ms
10,496 KB
testcase_04 AC 109 ms
10,112 KB
testcase_05 AC 84 ms
9,088 KB
testcase_06 AC 128 ms
11,392 KB
testcase_07 AC 119 ms
11,008 KB
testcase_08 AC 133 ms
11,648 KB
testcase_09 AC 136 ms
11,776 KB
testcase_10 AC 66 ms
7,936 KB
testcase_11 AC 68 ms
8,192 KB
testcase_12 AC 105 ms
10,368 KB
testcase_13 AC 104 ms
10,112 KB
testcase_14 AC 154 ms
12,416 KB
testcase_15 AC 139 ms
11,520 KB
testcase_16 AC 114 ms
10,496 KB
testcase_17 AC 66 ms
7,936 KB
testcase_18 AC 75 ms
8,448 KB
testcase_19 AC 93 ms
9,472 KB
testcase_20 AC 95 ms
9,728 KB
testcase_21 AC 92 ms
9,600 KB
testcase_22 AC 81 ms
9,088 KB
testcase_23 AC 128 ms
11,136 KB
testcase_24 AC 89 ms
9,216 KB
testcase_25 AC 74 ms
8,448 KB
testcase_26 AC 72 ms
8,192 KB
testcase_27 AC 80 ms
8,960 KB
testcase_28 AC 143 ms
11,904 KB
testcase_29 AC 93 ms
9,472 KB
testcase_30 AC 135 ms
11,648 KB
testcase_31 AC 82 ms
8,960 KB
testcase_32 AC 90 ms
9,344 KB
testcase_33 AC 96 ms
12,672 KB
testcase_34 AC 110 ms
12,672 KB
testcase_35 AC 80 ms
12,672 KB
testcase_36 AC 85 ms
12,672 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define rep(i, n) for(int(i) = 0; (i) < (n); (i)++)
#define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++)
#define ALL(v) (v).begin(), (v).end()
#define LLA(v) (v).rbegin(), (v).rend()
#define PB push_back
#define MP(a, b) make_pair((a), (b))
using namespace std;
template <class T> inline vector<T> make_vec(size_t a, T val) {
    return vector<T>(a, val);
}
template <class... Ts> inline auto make_vec(size_t a, Ts... ts) {
    return vector<decltype(make_vec(ts...))>(a, make_vec(ts...));
}
template <typename T> inline T read() {
    T t;
    cin >> t;
    return t;
}
template <typename T> inline vector<T> readv(size_t sz) {
    vector<T> ret(sz);
    rep(i, sz) cin >> ret[i];
    return ret;
}
template <typename... Ts> inline tuple<Ts...> reads() {
    return {read<Ts>()...};
}
template <typename T> struct edge {
    int to;
    T cost;
    edge(int t, T c) : to(t), cost(c) {}
};
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using Graph = vector<vector<int>>;
template <typename T> using WGraph = vector<vector<edge<T>>>;
const int INF = 1 << 30;
const ll LINF = 1LL << 60;
const int MOD = 998244353;

// 参考:https://qiita.com/drken/items/1b7e6e459c24a83bb7fd
// 1-indexed BIT
// add:log(N),sum:log(N),get_k-th:log(N)
// https://codeforces.com/contest/1354/problem/D
template <typename T> struct BIT {
    vector<T> dat;

    BIT(int n) {
        dat.resize(n + 1);
        for(int i = 0; i < (int)dat.size(); i++)
            dat[i] = 0;
    }

    // a is 1-indexed
    void add(int a, T x) {
        for(int i = a; i < (int)dat.size(); i += i & -i)
            dat[i] = dat[i] + x;
    }

    // [1,a], a is 1-indexed
    T sum(int a) {
        T res = 0;
        for(int i = a; i > 0; i -= i & -i) {
            res = res + dat[i];
        }
        return res;
    }

    // [a,b), a and b are 1-indexed
    T sum(int a, int b) { return sum(b - 1) - sum(a - 1); }
};

template <uint_fast64_t MOD> class ModInt {
    using u64 = uint_fast64_t;

  public:
    u64 val;

    ModInt(const u64 x = 0) : val((x + MOD) % MOD) {}
    constexpr u64 &value() { return val; }
    constexpr ModInt operator-() { return val ? MOD - val : 0; }
    constexpr ModInt operator+(const ModInt &rhs) const {
        return ModInt(*this) += rhs;
    }
    constexpr ModInt operator-(const ModInt &rhs) const {
        return ModInt(*this) -= rhs;
    }
    constexpr ModInt operator*(const ModInt &rhs) const {
        return ModInt(*this) *= rhs;
    }
    constexpr ModInt operator/(const ModInt &rhs) const {
        return ModInt(*this) /= rhs;
    }
    constexpr ModInt &operator+=(const ModInt &rhs) {
        val += rhs.val;
        if(val >= MOD) {
            val -= MOD;
        }
        return *this;
    }
    constexpr ModInt &operator-=(const ModInt &rhs) {
        if(val < rhs.val) {
            val += MOD;
        }
        val -= rhs.val;
        return *this;
    }
    constexpr ModInt &operator*=(const ModInt &rhs) {
        val = val * rhs.val % MOD;
        return *this;
    }

    constexpr ModInt &operator/=(const ModInt &rhs) {
        *this *= rhs.inv();
        return *this;
    }

    constexpr bool operator==(const ModInt &rhs) {
        return this->val == rhs.val;
    }
    constexpr bool operator!=(const ModInt &rhs) {
        return this->val != rhs.val;
    }
    friend constexpr ostream &operator<<(ostream &os, const ModInt<MOD> &x) {
        return os << x.val;
    }
    friend constexpr istream &operator>>(istream &is, ModInt<MOD> &x) {
        return is >> x.val;
    }

    constexpr ModInt inv() const { return ModInt(*this).pow(MOD - 2); }

    constexpr ModInt pow(ll e) const {
        u64 x = 1, p = val;
        while(e > 0) {
            if(e % 2 == 0) {
                p = (p * p) % MOD;
                e /= 2;
            } else {
                x = (x * p) % MOD;
                e--;
            }
        }
        return ModInt(x);
    }
};

using mint = ModInt<MOD>;

template <typename T> vector<T> compress(vector<T> &X) {
    vector<T> vals = X;
    sort(vals.begin(), vals.end());
    vals.erase(unique(vals.begin(), vals.end()), vals.end());
    for(int i = 0; i < X.size(); i++) {
        X[i] = lower_bound(vals.begin(), vals.end(), X[i]) - vals.begin() + 1;
    }
    return vals;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int N = read<int>();
    auto A = readv<ll>(N);
    mint S = 0;
    rep(i, N) S += A[i];
    auto table = compress(A);
    BIT<mint> leftsum(N + 1), rightsum(N + 1);
    BIT<ll> left(N + 1), right(N + 1);
    leftsum.add(A[0], table[A[0] - 1]);
    left.add(A[0], 1);
    for(int i = 2; i < N; i++) {
        rightsum.add(A[i], table[A[i] - 1]);
        right.add(A[i], 1);
    }
    mint res = 0;
    for(int i = 1; i < N - 1; i++) {
        ll l = i - left.sum(A[i]), r = right.sum(A[i] - 1);
        if(l != 0 && r != 0) {
            res += (leftsum.sum(N + 1) - leftsum.sum(A[i])) * r +
                   (rightsum.sum(A[i] - 1)) * l + mint(table[A[i] - 1]) * l * r;
        }
        left.add(A[i], 1);
        leftsum.add(A[i], table[A[i] - 1]);
        right.add(A[i + 1], -1);
        rightsum.add(A[i + 1], mint(table[A[i + 1] - 1]) * mint(-1));
    }
    cout << res << endl;
}
0