結果
問題 | No.1300 Sum of Inversions |
ユーザー | rokahikou1 |
提出日時 | 2020-11-28 01:42:31 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 154 ms / 2,000 ms |
コード長 | 5,283 bytes |
コンパイル時間 | 2,201 ms |
コンパイル使用メモリ | 181,164 KB |
実行使用メモリ | 12,672 KB |
最終ジャッジ日時 | 2024-09-12 21:42:22 |
合計ジャッジ時間 | 7,070 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 112 ms
10,496 KB |
testcase_04 | AC | 109 ms
10,112 KB |
testcase_05 | AC | 84 ms
9,088 KB |
testcase_06 | AC | 128 ms
11,392 KB |
testcase_07 | AC | 119 ms
11,008 KB |
testcase_08 | AC | 133 ms
11,648 KB |
testcase_09 | AC | 136 ms
11,776 KB |
testcase_10 | AC | 66 ms
7,936 KB |
testcase_11 | AC | 68 ms
8,192 KB |
testcase_12 | AC | 105 ms
10,368 KB |
testcase_13 | AC | 104 ms
10,112 KB |
testcase_14 | AC | 154 ms
12,416 KB |
testcase_15 | AC | 139 ms
11,520 KB |
testcase_16 | AC | 114 ms
10,496 KB |
testcase_17 | AC | 66 ms
7,936 KB |
testcase_18 | AC | 75 ms
8,448 KB |
testcase_19 | AC | 93 ms
9,472 KB |
testcase_20 | AC | 95 ms
9,728 KB |
testcase_21 | AC | 92 ms
9,600 KB |
testcase_22 | AC | 81 ms
9,088 KB |
testcase_23 | AC | 128 ms
11,136 KB |
testcase_24 | AC | 89 ms
9,216 KB |
testcase_25 | AC | 74 ms
8,448 KB |
testcase_26 | AC | 72 ms
8,192 KB |
testcase_27 | AC | 80 ms
8,960 KB |
testcase_28 | AC | 143 ms
11,904 KB |
testcase_29 | AC | 93 ms
9,472 KB |
testcase_30 | AC | 135 ms
11,648 KB |
testcase_31 | AC | 82 ms
8,960 KB |
testcase_32 | AC | 90 ms
9,344 KB |
testcase_33 | AC | 96 ms
12,672 KB |
testcase_34 | AC | 110 ms
12,672 KB |
testcase_35 | AC | 80 ms
12,672 KB |
testcase_36 | AC | 85 ms
12,672 KB |
ソースコード
#include <bits/stdc++.h> #define rep(i, n) for(int(i) = 0; (i) < (n); (i)++) #define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++) #define ALL(v) (v).begin(), (v).end() #define LLA(v) (v).rbegin(), (v).rend() #define PB push_back #define MP(a, b) make_pair((a), (b)) using namespace std; template <class T> inline vector<T> make_vec(size_t a, T val) { return vector<T>(a, val); } template <class... Ts> inline auto make_vec(size_t a, Ts... ts) { return vector<decltype(make_vec(ts...))>(a, make_vec(ts...)); } template <typename T> inline T read() { T t; cin >> t; return t; } template <typename T> inline vector<T> readv(size_t sz) { vector<T> ret(sz); rep(i, sz) cin >> ret[i]; return ret; } template <typename... Ts> inline tuple<Ts...> reads() { return {read<Ts>()...}; } template <typename T> struct edge { int to; T cost; edge(int t, T c) : to(t), cost(c) {} }; using ll = long long; using pii = pair<int, int>; using pll = pair<ll, ll>; using Graph = vector<vector<int>>; template <typename T> using WGraph = vector<vector<edge<T>>>; const int INF = 1 << 30; const ll LINF = 1LL << 60; const int MOD = 998244353; // 参考:https://qiita.com/drken/items/1b7e6e459c24a83bb7fd // 1-indexed BIT // add:log(N),sum:log(N),get_k-th:log(N) // https://codeforces.com/contest/1354/problem/D template <typename T> struct BIT { vector<T> dat; BIT(int n) { dat.resize(n + 1); for(int i = 0; i < (int)dat.size(); i++) dat[i] = 0; } // a is 1-indexed void add(int a, T x) { for(int i = a; i < (int)dat.size(); i += i & -i) dat[i] = dat[i] + x; } // [1,a], a is 1-indexed T sum(int a) { T res = 0; for(int i = a; i > 0; i -= i & -i) { res = res + dat[i]; } return res; } // [a,b), a and b are 1-indexed T sum(int a, int b) { return sum(b - 1) - sum(a - 1); } }; template <uint_fast64_t MOD> class ModInt { using u64 = uint_fast64_t; public: u64 val; ModInt(const u64 x = 0) : val((x + MOD) % MOD) {} constexpr u64 &value() { return val; } constexpr ModInt operator-() { return val ? MOD - val : 0; } constexpr ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; } constexpr ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; } constexpr ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; } constexpr ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; } constexpr ModInt &operator+=(const ModInt &rhs) { val += rhs.val; if(val >= MOD) { val -= MOD; } return *this; } constexpr ModInt &operator-=(const ModInt &rhs) { if(val < rhs.val) { val += MOD; } val -= rhs.val; return *this; } constexpr ModInt &operator*=(const ModInt &rhs) { val = val * rhs.val % MOD; return *this; } constexpr ModInt &operator/=(const ModInt &rhs) { *this *= rhs.inv(); return *this; } constexpr bool operator==(const ModInt &rhs) { return this->val == rhs.val; } constexpr bool operator!=(const ModInt &rhs) { return this->val != rhs.val; } friend constexpr ostream &operator<<(ostream &os, const ModInt<MOD> &x) { return os << x.val; } friend constexpr istream &operator>>(istream &is, ModInt<MOD> &x) { return is >> x.val; } constexpr ModInt inv() const { return ModInt(*this).pow(MOD - 2); } constexpr ModInt pow(ll e) const { u64 x = 1, p = val; while(e > 0) { if(e % 2 == 0) { p = (p * p) % MOD; e /= 2; } else { x = (x * p) % MOD; e--; } } return ModInt(x); } }; using mint = ModInt<MOD>; template <typename T> vector<T> compress(vector<T> &X) { vector<T> vals = X; sort(vals.begin(), vals.end()); vals.erase(unique(vals.begin(), vals.end()), vals.end()); for(int i = 0; i < X.size(); i++) { X[i] = lower_bound(vals.begin(), vals.end(), X[i]) - vals.begin() + 1; } return vals; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int N = read<int>(); auto A = readv<ll>(N); mint S = 0; rep(i, N) S += A[i]; auto table = compress(A); BIT<mint> leftsum(N + 1), rightsum(N + 1); BIT<ll> left(N + 1), right(N + 1); leftsum.add(A[0], table[A[0] - 1]); left.add(A[0], 1); for(int i = 2; i < N; i++) { rightsum.add(A[i], table[A[i] - 1]); right.add(A[i], 1); } mint res = 0; for(int i = 1; i < N - 1; i++) { ll l = i - left.sum(A[i]), r = right.sum(A[i] - 1); if(l != 0 && r != 0) { res += (leftsum.sum(N + 1) - leftsum.sum(A[i])) * r + (rightsum.sum(A[i] - 1)) * l + mint(table[A[i] - 1]) * l * r; } left.add(A[i], 1); leftsum.add(A[i], table[A[i] - 1]); right.add(A[i + 1], -1); rightsum.add(A[i + 1], mint(table[A[i + 1] - 1]) * mint(-1)); } cout << res << endl; }