結果

問題 No.1303 Inconvenient Kingdom
ユーザー kiyoshi0205kiyoshi0205
提出日時 2020-11-28 03:33:44
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 819 ms / 3,000 ms
コード長 9,053 bytes
コンパイル時間 4,035 ms
コンパイル使用メモリ 220,920 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-12 21:54:11
合計ジャッジ時間 16,070 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 3 ms
6,944 KB
testcase_08 AC 4 ms
6,940 KB
testcase_09 AC 462 ms
6,944 KB
testcase_10 AC 480 ms
6,940 KB
testcase_11 AC 658 ms
6,940 KB
testcase_12 AC 664 ms
6,940 KB
testcase_13 AC 740 ms
6,940 KB
testcase_14 AC 779 ms
6,940 KB
testcase_15 AC 795 ms
6,940 KB
testcase_16 AC 810 ms
6,940 KB
testcase_17 AC 808 ms
6,940 KB
testcase_18 AC 575 ms
6,944 KB
testcase_19 AC 574 ms
6,940 KB
testcase_20 AC 574 ms
6,944 KB
testcase_21 AC 175 ms
6,944 KB
testcase_22 AC 503 ms
6,940 KB
testcase_23 AC 728 ms
6,940 KB
testcase_24 AC 782 ms
6,944 KB
testcase_25 AC 819 ms
6,944 KB
testcase_26 AC 3 ms
6,944 KB
testcase_27 AC 3 ms
6,944 KB
testcase_28 AC 3 ms
6,944 KB
testcase_29 AC 2 ms
6,944 KB
testcase_30 AC 2 ms
6,940 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 1 ms
6,944 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
// #include<ext/pb_ds/assoc_container.hpp>
// #include<ext/pb_ds/tree_policy.hpp>
// #include<ext/pb_ds/tag_and_trait.hpp>
// using namespace __gnu_pbds;
// #include<boost/multiprecision/cpp_int.hpp>
// namespace multiprecisioninteger = boost::multiprecision;
// using cint=multiprecisioninteger::cpp_int;
using namespace std;
using ll=long long;
#define double long double
using datas=pair<ll,ll>;
using ddatas=pair<double,double>;
using tdata=pair<ll,datas>;
using vec=vector<ll>;
using mat=vector<vec>;
using pvec=vector<datas>;
using pmat=vector<pvec>;
// using llset=tree<ll,null_type,less<ll>,rb_tree_tag,tree_order_statistics_node_update>;
#define For(i,a,b) for(i=a;i<(ll)b;++i)
#define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i)
#define rep(i,N) For(i,0,N)
#define rep1(i,N) For(i,1,N)
#define brep(i,N) bFor(i,N,0)
#define brep1(i,N) bFor(i,N,1)
#define all(v) (v).begin(),(v).end()
#define allr(v) (v).rbegin(),(v).rend()
#define vsort(v) sort(all(v))
#define vrsort(v) sort(allr(v))
#define uniq(v) (v).erase(unique(all(v)),(v).end())
#define endl "\n"
#define eb emplace_back
#define print(x) cout<<x<<endl
#define printyes print("Yes")
#define printno print("No")
#define printYES print("YES")
#define printNO print("NO")
#define output(v) do{bool f=0;for(auto outi:v){cout<<(f?" ":"")<<outi;f=1;}cout<<endl;}while(0)
#define matoutput(v) do{for(auto outimat:v)output(outimat);}while(0)
// const ll mod=1000000007;
const ll mod=998244353;
const ll inf=1LL<<60;
const double PI=acos(-1);
const double eps=1e-9;
template<class T,class E> ostream& operator<<(ostream& os,const pair<T,E>& p){return os<<"("<<p.first<<","<<p.second<<")";}
template<class T> ostream& operator<<(ostream& os,const vector<T>& v){
  os<<"{";ll i;
  rep(i,v.size()){
    if(i)os<<",";
    os<<v[i];
  }
  os<<"}";
  return os;
}
template<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;}
template<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;}
#ifdef DEBUG
void debugg(){cout<<endl;}
template<class T,class... Args>void debugg(const T& x,const Args&... args){cout<<" "<<x;debugg(args...);}
#define debug(...) cout<<__LINE__<<" ["<<#__VA_ARGS__<<"]:",debugg(__VA_ARGS__)
#else
#define debug(...) (void(0))
#endif

void startupcpp(){
  cin.tie(0);
  ios::sync_with_stdio(false);
  cout<<fixed<<setprecision(15);
}

double distance(ddatas x,ddatas y){
  double a=x.first-y.first,b=x.second-y.second;
  return sqrt(a*a+b*b);
}

ll modinv(ll a,ll m=mod) {
  ll b=m,u=1,v=0,t;
  while(b){
    t=a/b;
    a-=t*b; swap(a,b);
    u-=t*v; swap(u,v);
  }
  return (u+m)%m;
}

ll moddevide(ll a,ll b){return (a*modinv(b))%mod;}

vec modncrlistp,modncrlistm;

ll modncr(ll n,ll r){
  if(n<r)return 0;
  ll i,size=modncrlistp.size();
  if(size<=n){
    modncrlistp.resize(n+1);
    modncrlistm.resize(n+1);
    if(!size){
      modncrlistp[0]=modncrlistm[0]=1;
      size++;
    }
    For(i,size,n+1){
      modncrlistp[i]=modncrlistp[i-1]*i%mod;
      modncrlistm[i]=modinv(modncrlistp[i]);
    }
  }
  return modncrlistp[n]*modncrlistm[r]%mod*modncrlistm[n-r]%mod;
}

ll modpow(ll a,ll n,ll m=mod){
  ll res=1;
  while(n>0){
    if(n&1)res=res*a%m;
    a=a*a%m;
    n>>=1;
  }
  return res;
}

ll gcd(ll a,ll b){if(!b)return abs(a);return (a%b==0)?abs(b):gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}

ll countdigits(ll n){
  ll ans=0;
  while(n){n/=10;ans++;}
  return ans;
}

ll sumdigits(ll n){
  ll ans=0;
  while(n){ans+=n%10;n/=10;}
  return ans;
}
class modmatrix{
  mat a;
  ll H,W;
public:
  modmatrix(mat& g):a(g){
    H=g.size();
    W=g[0].size();
  }
  modmatrix(ll i,ll j):a(i,vec(j,0)){H=i;W=j;}
  modmatrix(ll n):a(n,vec(n,0)){H=W=n;}
  inline vec& operator [](int k){
    return a[k];
  }
  modmatrix operator +=(modmatrix b){
    ll i,j;
    rep(i,this->H)rep(j,this->W){
      (*this)[i][j]+=b[i][j];
      if((*this)[i][j]>=mod)(*this)[i][j]-=mod;
    }
    return (*this);
  }
  modmatrix operator -=(modmatrix b){
    ll i,j;
    rep(i,this->H)rep(j,this->W){
      (*this)[i][j]-=b[i][j];
      if((*this)[i][j]<0)(*this)[i][j]+=mod;
    }
    return (*this);
  }
  modmatrix operator *=(modmatrix b){
    ll i,j,k;
    assert(this->W==b.H);
    modmatrix c(this->H,b.W);
    rep(i,this->H)rep(j,b.W){
      c[i][j]=0;
      rep(k,this->W)c[i][j]+=(*this)[i][k]*b[k][j]%mod;
      c[i][j]%=mod;
    }
    (*this)=c;
    return (*this);
  }
  modmatrix operator ^=(ll K){
    assert(this->H==this->W);
    modmatrix c(this->H);
    ll i;
    rep(i,this->H)c[i][i]=1;
    if(K&1)c*=(*this);
    while(K){
      K>>=1;
      (*this)*=(*this);
      if(K&1)c*=(*this);
    }
    this->a.swap(c.a);
    return (*this);
  }
  modmatrix operator +(modmatrix c){
    return modmatrix(*this)+=c;
  }
  modmatrix operator -(modmatrix c){
    return modmatrix(*this)-=c;
  }
  modmatrix operator *(modmatrix c){
    return modmatrix(*this)*=c;
  }
  modmatrix operator ^(ll K){
    return modmatrix(*this)^=K;
  }
  modmatrix del(ll eh,ll ew){
    ll i,j;
    mat res;
    rep(i,H){
      if(i==eh)continue;
      res.resize(res.size()+1);
      rep(j,W){
        if(j==ew)continue;
        res.back().eb(a[i][j]);
      }
    }
    return res;
  }
  ll determinant(){
    assert(H==W);
    ll i,j,k,ans=1;
    auto b(a);
    rep(i,H){
      if(!b[i][i]){
        For(j,i+1,H)if(b[j][i]){
          swap(b[i],b[j]);
          ans*=-1;
          break;
        }
        if(j==H)return 0;
      }
      (ans*=b[i][i])%=mod;
      For(j,i+1,W)(b[i][j]*=modinv(b[i][i]))%=mod;
      For(j,i+1,H)if(b[j][i]){
        ll x=mod-b[j][i];
        b[j][i]=0;
        For(k,i+1,W){
          b[j][k]+=x*b[i][k]%mod;
          if(b[j][k]>=mod)b[j][k]-=mod;
        }
      }
    }
    if(ans<0)ans+=mod;
    return ans;
  }
  modmatrix inv(){
    assert(H==W);
    ll i,j,k;
    modmatrix b(a),c(H,W);
    rep(i,H)c[i][i]=1;
    rep(i,H){
      if(!b[i][i]){
        For(j,i+1,H)if(b[j][i]){
          swap(b[i],b[j]);
          swap(c[i],c[j]);
          break;
        }
        if(j==H)assert(false);
      }
      ll x=modinv(b[i][i]);
      rep(j,W){
        (b[i][j]*=x)%=mod;
        (c[i][j]*=x)%=mod;
      }
      rep(j,H){
        if(i==j)continue;
        if(b[j][i]){
          x=mod-b[j][i];
          rep(k,W){
            b[j][k]+=x*b[i][k]%mod;
            if(b[j][k]>=mod)b[j][k]-=mod;
            c[j][k]+=x*c[i][k]%mod;
            if(c[j][k]>=mod)c[j][k]-=mod;
          }
        }
      }
    }
    return c;
  }
  void out(){
    for(auto x:a)output(x);
  }
};
struct unionfind{
  private:
  int maxN;
  vector<int> par,treesize;
  public:unionfind(int N) :maxN(N),par(N),treesize(N,1){
    for(int i=0;i<maxN;++i)par[i]=i;
  }
  int root(int x){
    while(par[x]!=x){
      x=par[x]=par[par[x]];
    }
    return x;
  }
  bool unite(int x,int y){
    x=root(x);
    y=root(y);
    if(x==y)return false;
    if(treesize[x]>treesize[y])swap(x,y);
    par[x]=y;
    treesize[y]+=treesize[x];
    return true;
  }
  bool unite(pair<int,int> v){
    return unite(v.first,v.second);
  }
  bool parcheck(int x,int y){
    return root(x)==root(y);
  }
  bool parcheck(pair<int,int> v){
    return parcheck(v.first,v.second);
  }
  int size(int x){
    return treesize[root(x)];
  }
  void clear(){
    treesize.assign(maxN,1);
    for(int i=0;i<maxN;++i)par[i]=i;
  }
  vector<vector<int>> groups(){
    vector<vector<int>> res(maxN);
    for(int i=0;i<maxN;++i)res[root(i)].eb(i);
    // return res;
    vector<vector<int>> res2;
    for(vector<int> x:res){
      if(x.size())res2.eb(x);
    }
    return res2;
  }
};
ll N,M,K,H,W,A,B,C,D;
string s,t;
ll ans;
int main(){
  // startupcpp();
  // int codeforces;cin>>codeforces;while(codeforces--){
  ll i,j;
  cin>>N>>M;
  mat g(N,vec(N,0));
  unionfind dsu(N);
  rep(i,M){
    cin>>A>>B;
    --A;--B;
    g[A][B]=g[B][A]=mod-1;
    dsu.unite(A,B);
    g[A][A]++;g[B][B]++;
  }
  if(dsu.size(0)==N){
    print(0);
    modmatrix mg(g);
    // mg.out();
    ans=mg.del(0,0).determinant();
    debug(ans);
    rep1(i,N){
      auto ch=mg.del(i,i);
      A=ch.determinant();
      auto rev=ch.inv();
      rep(j,i){
        if(!g[i][j]){
          ans+=rev[j][j]*A%mod;
          debug(ans);
        }
      }
    }
    print(ans%mod);
  }else{
    auto group=dsu.groups();
    sort(all(group),[](auto l,auto r){return l.size()>r.size();});
    vec ch;
    A=B=0;
    for(auto x:group){
      ans+=(N-x.size())*x.size();
      A+=x.size()==group[0].size();
      B+=x.size()==group[1].size();
      if(x.size()==1){
        ch.eb(1);
        continue;
      }
      modmatrix chg(x.size(),x.size());
      rep(i,x.size())rep(j,x.size())chg[i][j]=g[x[i]][x[j]];
      ch.eb(chg.del(0,0).determinant());
    }
    C=(ll)group[0].size()*group[1].size();
    print(ans-C*2);
    debug(A,B,ch);
    if(A>1){
      ans=modncr(A,2);
    }else{
      ans=B;
    }
    (ans*=C%mod)%=mod;
    print(accumulate(all(ch),ans,[](ll a,ll b){return (a*b)%mod;}));
  }
// }
}
0