結果

問題 No.1303 Inconvenient Kingdom
ユーザー kiyoshi0205
提出日時 2020-11-28 03:33:44
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 819 ms / 3,000 ms
コード長 9,053 bytes
コンパイル時間 4,035 ms
コンパイル使用メモリ 220,920 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-12 21:54:11
合計ジャッジ時間 16,070 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC target("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
// #include<ext/pb_ds/assoc_container.hpp>
// #include<ext/pb_ds/tree_policy.hpp>
// #include<ext/pb_ds/tag_and_trait.hpp>
// using namespace __gnu_pbds;
// #include<boost/multiprecision/cpp_int.hpp>
// namespace multiprecisioninteger = boost::multiprecision;
// using cint=multiprecisioninteger::cpp_int;
using namespace std;
using ll=long long;
#define double long double
using datas=pair<ll,ll>;
using ddatas=pair<double,double>;
using tdata=pair<ll,datas>;
using vec=vector<ll>;
using mat=vector<vec>;
using pvec=vector<datas>;
using pmat=vector<pvec>;
// using llset=tree<ll,null_type,less<ll>,rb_tree_tag,tree_order_statistics_node_update>;
#define For(i,a,b) for(i=a;i<(ll)b;++i)
#define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i)
#define rep(i,N) For(i,0,N)
#define rep1(i,N) For(i,1,N)
#define brep(i,N) bFor(i,N,0)
#define brep1(i,N) bFor(i,N,1)
#define all(v) (v).begin(),(v).end()
#define allr(v) (v).rbegin(),(v).rend()
#define vsort(v) sort(all(v))
#define vrsort(v) sort(allr(v))
#define uniq(v) (v).erase(unique(all(v)),(v).end())
#define endl "\n"
#define eb emplace_back
#define print(x) cout<<x<<endl
#define printyes print("Yes")
#define printno print("No")
#define printYES print("YES")
#define printNO print("NO")
#define output(v) do{bool f=0;for(auto outi:v){cout<<(f?" ":"")<<outi;f=1;}cout<<endl;}while(0)
#define matoutput(v) do{for(auto outimat:v)output(outimat);}while(0)
// const ll mod=1000000007;
const ll mod=998244353;
const ll inf=1LL<<60;
const double PI=acos(-1);
const double eps=1e-9;
template<class T,class E> ostream& operator<<(ostream& os,const pair<T,E>& p){return os<<"("<<p.first<<","<<p.second<<")";}
template<class T> ostream& operator<<(ostream& os,const vector<T>& v){
os<<"{";ll i;
rep(i,v.size()){
if(i)os<<",";
os<<v[i];
}
os<<"}";
return os;
}
template<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;}
template<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;}
#ifdef DEBUG
void debugg(){cout<<endl;}
template<class T,class... Args>void debugg(const T& x,const Args&... args){cout<<" "<<x;debugg(args...);}
#define debug(...) cout<<__LINE__<<" ["<<#__VA_ARGS__<<"]:",debugg(__VA_ARGS__)
#else
#define debug(...) (void(0))
#endif
void startupcpp(){
cin.tie(0);
ios::sync_with_stdio(false);
cout<<fixed<<setprecision(15);
}
double distance(ddatas x,ddatas y){
double a=x.first-y.first,b=x.second-y.second;
return sqrt(a*a+b*b);
}
ll modinv(ll a,ll m=mod) {
ll b=m,u=1,v=0,t;
while(b){
t=a/b;
a-=t*b; swap(a,b);
u-=t*v; swap(u,v);
}
return (u+m)%m;
}
ll moddevide(ll a,ll b){return (a*modinv(b))%mod;}
vec modncrlistp,modncrlistm;
ll modncr(ll n,ll r){
if(n<r)return 0;
ll i,size=modncrlistp.size();
if(size<=n){
modncrlistp.resize(n+1);
modncrlistm.resize(n+1);
if(!size){
modncrlistp[0]=modncrlistm[0]=1;
size++;
}
For(i,size,n+1){
modncrlistp[i]=modncrlistp[i-1]*i%mod;
modncrlistm[i]=modinv(modncrlistp[i]);
}
}
return modncrlistp[n]*modncrlistm[r]%mod*modncrlistm[n-r]%mod;
}
ll modpow(ll a,ll n,ll m=mod){
ll res=1;
while(n>0){
if(n&1)res=res*a%m;
a=a*a%m;
n>>=1;
}
return res;
}
ll gcd(ll a,ll b){if(!b)return abs(a);return (a%b==0)?abs(b):gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll countdigits(ll n){
ll ans=0;
while(n){n/=10;ans++;}
return ans;
}
ll sumdigits(ll n){
ll ans=0;
while(n){ans+=n%10;n/=10;}
return ans;
}
class modmatrix{
mat a;
ll H,W;
public:
modmatrix(mat& g):a(g){
H=g.size();
W=g[0].size();
}
modmatrix(ll i,ll j):a(i,vec(j,0)){H=i;W=j;}
modmatrix(ll n):a(n,vec(n,0)){H=W=n;}
inline vec& operator [](int k){
return a[k];
}
modmatrix operator +=(modmatrix b){
ll i,j;
rep(i,this->H)rep(j,this->W){
(*this)[i][j]+=b[i][j];
if((*this)[i][j]>=mod)(*this)[i][j]-=mod;
}
return (*this);
}
modmatrix operator -=(modmatrix b){
ll i,j;
rep(i,this->H)rep(j,this->W){
(*this)[i][j]-=b[i][j];
if((*this)[i][j]<0)(*this)[i][j]+=mod;
}
return (*this);
}
modmatrix operator *=(modmatrix b){
ll i,j,k;
assert(this->W==b.H);
modmatrix c(this->H,b.W);
rep(i,this->H)rep(j,b.W){
c[i][j]=0;
rep(k,this->W)c[i][j]+=(*this)[i][k]*b[k][j]%mod;
c[i][j]%=mod;
}
(*this)=c;
return (*this);
}
modmatrix operator ^=(ll K){
assert(this->H==this->W);
modmatrix c(this->H);
ll i;
rep(i,this->H)c[i][i]=1;
if(K&1)c*=(*this);
while(K){
K>>=1;
(*this)*=(*this);
if(K&1)c*=(*this);
}
this->a.swap(c.a);
return (*this);
}
modmatrix operator +(modmatrix c){
return modmatrix(*this)+=c;
}
modmatrix operator -(modmatrix c){
return modmatrix(*this)-=c;
}
modmatrix operator *(modmatrix c){
return modmatrix(*this)*=c;
}
modmatrix operator ^(ll K){
return modmatrix(*this)^=K;
}
modmatrix del(ll eh,ll ew){
ll i,j;
mat res;
rep(i,H){
if(i==eh)continue;
res.resize(res.size()+1);
rep(j,W){
if(j==ew)continue;
res.back().eb(a[i][j]);
}
}
return res;
}
ll determinant(){
assert(H==W);
ll i,j,k,ans=1;
auto b(a);
rep(i,H){
if(!b[i][i]){
For(j,i+1,H)if(b[j][i]){
swap(b[i],b[j]);
ans*=-1;
break;
}
if(j==H)return 0;
}
(ans*=b[i][i])%=mod;
For(j,i+1,W)(b[i][j]*=modinv(b[i][i]))%=mod;
For(j,i+1,H)if(b[j][i]){
ll x=mod-b[j][i];
b[j][i]=0;
For(k,i+1,W){
b[j][k]+=x*b[i][k]%mod;
if(b[j][k]>=mod)b[j][k]-=mod;
}
}
}
if(ans<0)ans+=mod;
return ans;
}
modmatrix inv(){
assert(H==W);
ll i,j,k;
modmatrix b(a),c(H,W);
rep(i,H)c[i][i]=1;
rep(i,H){
if(!b[i][i]){
For(j,i+1,H)if(b[j][i]){
swap(b[i],b[j]);
swap(c[i],c[j]);
break;
}
if(j==H)assert(false);
}
ll x=modinv(b[i][i]);
rep(j,W){
(b[i][j]*=x)%=mod;
(c[i][j]*=x)%=mod;
}
rep(j,H){
if(i==j)continue;
if(b[j][i]){
x=mod-b[j][i];
rep(k,W){
b[j][k]+=x*b[i][k]%mod;
if(b[j][k]>=mod)b[j][k]-=mod;
c[j][k]+=x*c[i][k]%mod;
if(c[j][k]>=mod)c[j][k]-=mod;
}
}
}
}
return c;
}
void out(){
for(auto x:a)output(x);
}
};
struct unionfind{
private:
int maxN;
vector<int> par,treesize;
public:unionfind(int N) :maxN(N),par(N),treesize(N,1){
for(int i=0;i<maxN;++i)par[i]=i;
}
int root(int x){
while(par[x]!=x){
x=par[x]=par[par[x]];
}
return x;
}
bool unite(int x,int y){
x=root(x);
y=root(y);
if(x==y)return false;
if(treesize[x]>treesize[y])swap(x,y);
par[x]=y;
treesize[y]+=treesize[x];
return true;
}
bool unite(pair<int,int> v){
return unite(v.first,v.second);
}
bool parcheck(int x,int y){
return root(x)==root(y);
}
bool parcheck(pair<int,int> v){
return parcheck(v.first,v.second);
}
int size(int x){
return treesize[root(x)];
}
void clear(){
treesize.assign(maxN,1);
for(int i=0;i<maxN;++i)par[i]=i;
}
vector<vector<int>> groups(){
vector<vector<int>> res(maxN);
for(int i=0;i<maxN;++i)res[root(i)].eb(i);
// return res;
vector<vector<int>> res2;
for(vector<int> x:res){
if(x.size())res2.eb(x);
}
return res2;
}
};
ll N,M,K,H,W,A,B,C,D;
string s,t;
ll ans;
int main(){
// startupcpp();
// int codeforces;cin>>codeforces;while(codeforces--){
ll i,j;
cin>>N>>M;
mat g(N,vec(N,0));
unionfind dsu(N);
rep(i,M){
cin>>A>>B;
--A;--B;
g[A][B]=g[B][A]=mod-1;
dsu.unite(A,B);
g[A][A]++;g[B][B]++;
}
if(dsu.size(0)==N){
print(0);
modmatrix mg(g);
// mg.out();
ans=mg.del(0,0).determinant();
debug(ans);
rep1(i,N){
auto ch=mg.del(i,i);
A=ch.determinant();
auto rev=ch.inv();
rep(j,i){
if(!g[i][j]){
ans+=rev[j][j]*A%mod;
debug(ans);
}
}
}
print(ans%mod);
}else{
auto group=dsu.groups();
sort(all(group),[](auto l,auto r){return l.size()>r.size();});
vec ch;
A=B=0;
for(auto x:group){
ans+=(N-x.size())*x.size();
A+=x.size()==group[0].size();
B+=x.size()==group[1].size();
if(x.size()==1){
ch.eb(1);
continue;
}
modmatrix chg(x.size(),x.size());
rep(i,x.size())rep(j,x.size())chg[i][j]=g[x[i]][x[j]];
ch.eb(chg.del(0,0).determinant());
}
C=(ll)group[0].size()*group[1].size();
print(ans-C*2);
debug(A,B,ch);
if(A>1){
ans=modncr(A,2);
}else{
ans=B;
}
(ans*=C%mod)%=mod;
print(accumulate(all(ch),ans,[](ll a,ll b){return (a*b)%mod;}));
}
// }
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0