結果
| 問題 |
No.1300 Sum of Inversions
|
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2020-11-28 07:36:26 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,644 bytes |
| コンパイル時間 | 2,352 ms |
| コンパイル使用メモリ | 207,672 KB |
| 最終ジャッジ日時 | 2025-01-16 09:11:51 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 2 WA * 32 |
ソースコード
#include <bits/stdc++.h>
#define REP(i, n) for (int i = 0, REP_N_ = (n); i < REP_N_; ++i)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
using u64 = unsigned long long;
template <class T>
inline int ssize(const T &a) {
return (int)std::size(a);
}
template <class T>
inline bool chmax(T &a, T b) {
return a < b and ((a = std::move(b)), true);
}
template <class T>
inline bool chmin(T &a, T b) {
return a > b and ((a = std::move(b)), true);
}
template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
for (auto &x : a) is >> x;
return is;
}
template <typename Container>
std::ostream &pprint(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n", std::ostream *os = nullptr) {
if (os == nullptr) os = &std::cout;
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) *os << sep;
*os << *it;
}
return *os << ends;
}
template <typename T, typename = void>
struct is_iterable : std::false_type {};
template <typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {};
template <typename T, typename = std::enable_if_t<
is_iterable<T>::value &&
!std::is_same<T, std::string_view>::value &&
!std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return pprint(a, ", ", "", &(os << "{")) << "}";
}
template <typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
return os << "(" << a.first << ", " << a.second << ")";
}
#ifdef ENABLE_DEBUG
template <typename T>
void pdebug(const T &value) {
std::cerr << value;
}
template <typename T, typename... Ts>
void pdebug(const T &value, const Ts &...args) {
pdebug(value);
std::cerr << ", ";
pdebug(args...);
}
#define DEBUG(...) \
do { \
std::cerr << " \033[33m (L" << __LINE__ << ") "; \
std::cerr << #__VA_ARGS__ << ":\033[0m "; \
pdebug(__VA_ARGS__); \
std::cerr << std::endl; \
} while (0)
#else
#define pdebug(...)
#define DEBUG(...)
#endif
using namespace std;
template <unsigned int M>
struct ModInt {
constexpr ModInt(long long val = 0) : _v(0) {
if (val < 0) {
long long k = (abs(val) + M - 1) / M;
val += k * M;
}
assert(val >= 0);
_v = val % M;
}
static constexpr int mod() { return M; }
static constexpr unsigned int umod() { return M; }
inline unsigned int val() const { return _v; }
ModInt &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
ModInt &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
ModInt operator++(int) {
auto result = *this;
++*this;
return result;
}
ModInt operator--(int) {
auto result = *this;
--*this;
return result;
}
constexpr ModInt operator-() const { return ModInt(-_v); }
constexpr ModInt &operator+=(const ModInt &a) {
if ((_v += a._v) >= M) _v -= M;
return *this;
}
constexpr ModInt &operator-=(const ModInt &a) {
if ((_v += M - a._v) >= M) _v -= M;
return *this;
}
constexpr ModInt &operator*=(const ModInt &a) {
_v = ((unsigned long long)(_v)*a._v) % M;
return *this;
}
constexpr ModInt pow(unsigned long long t) const {
ModInt base = *this;
ModInt res = 1;
while (t) {
if (t & 1) res *= base;
base *= base;
t >>= 1;
}
return res;
}
constexpr ModInt inv() const {
// Inverse by Extended Euclidean algorithm.
// M doesn't need to be prime, but x and M must be coprime.
assert(_v != 0);
auto [g, x, y] = ext_gcd(_v, M);
assert(g == 1LL); // The GCD must be 1.
return x;
// Inverse by Fermat's little theorem.
// M must be prime. It's often faster.
//
// return pow(M - 2);
}
constexpr ModInt &operator/=(const ModInt &a) { return *this *= a.inv(); }
friend constexpr ModInt operator+(const ModInt &a, const ModInt &b) {
return ModInt(a) += b;
}
friend constexpr ModInt operator-(const ModInt &a, const ModInt &b) {
return ModInt(a) -= b;
}
friend constexpr ModInt operator*(const ModInt &a, const ModInt &b) {
return ModInt(a) *= b;
}
friend constexpr ModInt operator/(const ModInt &a, const ModInt &b) {
return ModInt(a) /= b;
}
friend constexpr bool operator==(const ModInt &a, const ModInt &b) {
return a._v == b._v;
}
friend constexpr bool operator!=(const ModInt &a, const ModInt &b) {
return a._v != b._v;
}
friend std::istream &operator>>(std::istream &is, ModInt &a) {
return is >> a._v;
}
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) {
return os << a._v;
}
private:
// Extended Euclidean algorithm
// Returns (gcd(a,b), x, y) where `a*x + b*y == gcd(a,b)`.
static std::tuple<int, int, int> ext_gcd(int a, int b) {
int ax = 1, ay = 0, bx = 0, by = 1;
for (;;) {
if (b == 0) break;
auto d = std::div(a, b);
a = b;
b = d.rem;
ax -= bx * d.quot;
std::swap(ax, bx);
ay -= by * d.quot;
std::swap(ay, by);
}
return {a, ax, ay};
}
unsigned int _v; // raw value
};
const unsigned int MOD = 998244353;
using Mint = ModInt<MOD>;
template <typename Monoid>
struct SegTree {
using T = typename Monoid::T;
inline int n() const { return n_; }
inline int offset() const { return offset_; }
explicit SegTree(int n) : n_(n) {
offset_ = 1;
while (offset_ < n_) offset_ <<= 1;
data_.assign(2 * offset_, Monoid::id());
}
explicit SegTree(const std::vector<T> &leaves) : n_(leaves.size()) {
offset_ = 1;
while (offset_ < n_) offset_ <<= 1;
data_.assign(2 * offset_, Monoid::id());
for (int i = 0; i < n_; ++i) {
data_[offset_ + i] = leaves[i];
}
for (int i = offset_ - 1; i > 0; --i) {
data_[i] = Monoid::op(data_[i * 2], data_[i * 2 + 1]);
}
}
// Sets i-th value (0-indexed) to x.
void set(int i, const T &x) {
int k = offset_ + i;
data_[k] = x;
// Update its ancestors.
while (k > 1) {
k >>= 1;
data_[k] = Monoid::op(data_[k * 2], data_[k * 2 + 1]);
}
}
// Queries by [l,r) range (0-indexed, half-open interval).
T fold(int l, int r) const {
l = std::max(l, 0) + offset_;
r = std::min(r, offset_) + offset_;
T vleft = Monoid::id(), vright = Monoid::id();
for (; l < r; l >>= 1, r >>= 1) {
if (l & 1) vleft = Monoid::op(vleft, data_[l++]);
if (r & 1) vright = Monoid::op(data_[--r], vright);
}
return Monoid::op(vleft, vright);
}
T fold_all() const { return data_[1]; }
// Returns i-th value (0-indexed).
T operator[](int i) const { return data_[offset_ + i]; }
friend std::ostream &operator<<(std::ostream &os, const SegTree &st) {
os << "[";
for (int i = 0; i < st.n(); ++i) {
if (i != 0) os << ", ";
const auto &x = st[i];
os << x;
}
return os << "]";
}
private:
int n_; // number of valid leaves.
int offset_; // where leaves start
std::vector<T> data_; // data size: 2*offset_
};
struct Sum {
struct T {
Mint sum;
int count;
};
static T op(const T &x, const T &y) {
return {x.sum + y.sum, x.count + y.count};
}
static constexpr T id() { return {0, 0}; }
};
template <typename T>
struct Compress {
std::vector<T> vec;
explicit Compress(std::vector<T> v) : vec(v) {
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
}
int size() const { return vec.size(); }
int index(T x) const {
return lower_bound(vec.begin(), vec.end(), x) - vec.begin();
}
const T &value(int i) const { return vec[i]; }
};
Mint solve() {
int N;
cin >> N;
vector<int> A(N);
cin >> A;
Compress<int> ca(A);
const int L = 200'005;
SegTree<Sum> seg(L), seg2(2 * L);
Mint ans = 0;
for (int i = N - 1; i >= 0; --i) {
int j = ca.index(A[i]);
auto r1 = seg.fold(0, j);
auto r2 = seg2.fold(0, j);
ans += r2.sum + r2.count * Mint(A[i]);
Mint sum2 = r1.sum + r1.count * Mint(A[i]);
int count2 = r1.count;
seg2.set(j, {sum2, count2});
seg.set(j, {A[i], 1});
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << solve() << endl;
}
keijak