結果
問題 | No.1300 Sum of Inversions |
ユーザー | keijak |
提出日時 | 2020-11-28 07:47:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 173 ms / 2,000 ms |
コード長 | 8,794 bytes |
コンパイル時間 | 2,584 ms |
コンパイル使用メモリ | 216,056 KB |
実行使用メモリ | 21,172 KB |
最終ジャッジ日時 | 2024-09-12 22:07:50 |
合計ジャッジ時間 | 8,016 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 138 ms
20,740 KB |
testcase_04 | AC | 133 ms
20,712 KB |
testcase_05 | AC | 103 ms
12,244 KB |
testcase_06 | AC | 154 ms
20,904 KB |
testcase_07 | AC | 141 ms
20,756 KB |
testcase_08 | AC | 163 ms
21,032 KB |
testcase_09 | AC | 166 ms
20,992 KB |
testcase_10 | AC | 85 ms
12,100 KB |
testcase_11 | AC | 86 ms
12,128 KB |
testcase_12 | AC | 131 ms
20,680 KB |
testcase_13 | AC | 127 ms
20,596 KB |
testcase_14 | AC | 173 ms
21,092 KB |
testcase_15 | AC | 164 ms
20,884 KB |
testcase_16 | AC | 139 ms
20,868 KB |
testcase_17 | AC | 77 ms
12,176 KB |
testcase_18 | AC | 92 ms
12,168 KB |
testcase_19 | AC | 114 ms
20,532 KB |
testcase_20 | AC | 119 ms
20,524 KB |
testcase_21 | AC | 112 ms
20,560 KB |
testcase_22 | AC | 103 ms
12,360 KB |
testcase_23 | AC | 158 ms
20,948 KB |
testcase_24 | AC | 112 ms
12,324 KB |
testcase_25 | AC | 87 ms
12,260 KB |
testcase_26 | AC | 91 ms
12,108 KB |
testcase_27 | AC | 104 ms
12,316 KB |
testcase_28 | AC | 171 ms
21,052 KB |
testcase_29 | AC | 119 ms
20,508 KB |
testcase_30 | AC | 167 ms
20,896 KB |
testcase_31 | AC | 107 ms
12,268 KB |
testcase_32 | AC | 111 ms
12,312 KB |
testcase_33 | AC | 18 ms
6,940 KB |
testcase_34 | AC | 32 ms
6,944 KB |
testcase_35 | AC | 90 ms
21,172 KB |
testcase_36 | AC | 96 ms
21,092 KB |
ソースコード
#include <bits/stdc++.h> #define REP(i, n) for (int i = 0, REP_N_ = (n); i < REP_N_; ++i) #define ALL(x) std::begin(x), std::end(x) using i64 = long long; using u64 = unsigned long long; template <class T> inline int ssize(const T &a) { return (int)std::size(a); } template <class T> inline bool chmax(T &a, T b) { return a < b and ((a = std::move(b)), true); } template <class T> inline bool chmin(T &a, T b) { return a > b and ((a = std::move(b)), true); } template <typename T> std::istream &operator>>(std::istream &is, std::vector<T> &a) { for (auto &x : a) is >> x; return is; } template <typename Container> std::ostream &pprint(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream *os = nullptr) { if (os == nullptr) os = &std::cout; auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) *os << sep; *os << *it; } return *os << ends; } template <typename T, typename = void> struct is_iterable : std::false_type {}; template <typename T> struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())), decltype(std::end(std::declval<T>()))>> : std::true_type {}; template <typename T, typename = std::enable_if_t< is_iterable<T>::value && !std::is_same<T, std::string_view>::value && !std::is_same<T, std::string>::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return pprint(a, ", ", "", &(os << "{")) << "}"; } template <typename T, typename U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) { return os << "(" << a.first << ", " << a.second << ")"; } #ifdef ENABLE_DEBUG template <typename T> void pdebug(const T &value) { std::cerr << value; } template <typename T, typename... Ts> void pdebug(const T &value, const Ts &...args) { pdebug(value); std::cerr << ", "; pdebug(args...); } #define DEBUG(...) \ do { \ std::cerr << " \033[33m (L" << __LINE__ << ") "; \ std::cerr << #__VA_ARGS__ << ":\033[0m "; \ pdebug(__VA_ARGS__); \ std::cerr << std::endl; \ } while (0) #else #define pdebug(...) #define DEBUG(...) #endif using namespace std; template <unsigned int M> struct ModInt { constexpr ModInt(long long val = 0) : _v(0) { if (val < 0) { long long k = (abs(val) + M - 1) / M; val += k * M; } assert(val >= 0); _v = val % M; } static constexpr int mod() { return M; } static constexpr unsigned int umod() { return M; } inline unsigned int val() const { return _v; } ModInt &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } ModInt &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } ModInt operator++(int) { auto result = *this; ++*this; return result; } ModInt operator--(int) { auto result = *this; --*this; return result; } constexpr ModInt operator-() const { return ModInt(-_v); } constexpr ModInt &operator+=(const ModInt &a) { if ((_v += a._v) >= M) _v -= M; return *this; } constexpr ModInt &operator-=(const ModInt &a) { if ((_v += M - a._v) >= M) _v -= M; return *this; } constexpr ModInt &operator*=(const ModInt &a) { _v = ((unsigned long long)(_v)*a._v) % M; return *this; } constexpr ModInt pow(unsigned long long t) const { ModInt base = *this; ModInt res = 1; while (t) { if (t & 1) res *= base; base *= base; t >>= 1; } return res; } constexpr ModInt inv() const { // Inverse by Extended Euclidean algorithm. // M doesn't need to be prime, but x and M must be coprime. assert(_v != 0); auto [g, x, y] = ext_gcd(_v, M); assert(g == 1LL); // The GCD must be 1. return x; // Inverse by Fermat's little theorem. // M must be prime. It's often faster. // // return pow(M - 2); } constexpr ModInt &operator/=(const ModInt &a) { return *this *= a.inv(); } friend constexpr ModInt operator+(const ModInt &a, const ModInt &b) { return ModInt(a) += b; } friend constexpr ModInt operator-(const ModInt &a, const ModInt &b) { return ModInt(a) -= b; } friend constexpr ModInt operator*(const ModInt &a, const ModInt &b) { return ModInt(a) *= b; } friend constexpr ModInt operator/(const ModInt &a, const ModInt &b) { return ModInt(a) /= b; } friend constexpr bool operator==(const ModInt &a, const ModInt &b) { return a._v == b._v; } friend constexpr bool operator!=(const ModInt &a, const ModInt &b) { return a._v != b._v; } friend std::istream &operator>>(std::istream &is, ModInt &a) { return is >> a._v; } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a._v; } private: // Extended Euclidean algorithm // Returns (gcd(a,b), x, y) where `a*x + b*y == gcd(a,b)`. static std::tuple<int, int, int> ext_gcd(int a, int b) { int ax = 1, ay = 0, bx = 0, by = 1; for (;;) { if (b == 0) break; auto d = std::div(a, b); a = b; b = d.rem; ax -= bx * d.quot; std::swap(ax, bx); ay -= by * d.quot; std::swap(ay, by); } return {a, ax, ay}; } unsigned int _v; // raw value }; const unsigned int MOD = 998244353; using Mint = ModInt<MOD>; template <typename Monoid> struct SegTree { using T = typename Monoid::T; inline int n() const { return n_; } inline int offset() const { return offset_; } explicit SegTree(int n) : n_(n) { offset_ = 1; while (offset_ < n_) offset_ <<= 1; data_.assign(2 * offset_, Monoid::id()); } explicit SegTree(const std::vector<T> &leaves) : n_(leaves.size()) { offset_ = 1; while (offset_ < n_) offset_ <<= 1; data_.assign(2 * offset_, Monoid::id()); for (int i = 0; i < n_; ++i) { data_[offset_ + i] = leaves[i]; } for (int i = offset_ - 1; i > 0; --i) { data_[i] = Monoid::op(data_[i * 2], data_[i * 2 + 1]); } } // Sets i-th value (0-indexed) to x. void set(int i, const T &x) { int k = offset_ + i; data_[k] = x; // Update its ancestors. while (k > 1) { k >>= 1; data_[k] = Monoid::op(data_[k * 2], data_[k * 2 + 1]); } } // Queries by [l,r) range (0-indexed, half-open interval). T fold(int l, int r) const { l = std::max(l, 0) + offset_; r = std::min(r, offset_) + offset_; T vleft = Monoid::id(), vright = Monoid::id(); for (; l < r; l >>= 1, r >>= 1) { if (l & 1) vleft = Monoid::op(vleft, data_[l++]); if (r & 1) vright = Monoid::op(data_[--r], vright); } return Monoid::op(vleft, vright); } T fold_all() const { return data_[1]; } // Returns i-th value (0-indexed). T operator[](int i) const { return data_[offset_ + i]; } friend std::ostream &operator<<(std::ostream &os, const SegTree &st) { os << "["; for (int i = 0; i < st.n(); ++i) { if (i != 0) os << ", "; const auto &x = st[i]; os << x; } return os << "]"; } private: int n_; // number of valid leaves. int offset_; // where leaves start std::vector<T> data_; // data size: 2*offset_ }; struct Sum { struct T { Mint sum; i64 count; }; static T op(const T &x, const T &y) { return {x.sum + y.sum, x.count + y.count}; } static constexpr T id() { return {0, 0}; } }; template <typename T> struct Compress { std::vector<T> vec; explicit Compress(std::vector<T> v) : vec(v) { std::sort(vec.begin(), vec.end()); vec.erase(std::unique(vec.begin(), vec.end()), vec.end()); } int size() const { return vec.size(); } int index(T x) const { return lower_bound(vec.begin(), vec.end(), x) - vec.begin(); } const T &value(int i) const { return vec[i]; } }; Mint solve() { int N; cin >> N; vector<int> A(N); cin >> A; Compress<int> ca(A); SegTree<Sum> seg(ca.size()), seg2(ca.size()); Mint ans = 0; for (int i = N - 1; i >= 0; --i) { int j = ca.index(A[i]); auto r2 = seg2.fold(0, j); ans += r2.sum + r2.count * Mint(A[i]); { auto qj = seg[j]; qj.sum += A[i]; qj.count++; seg.set(j, qj); } auto r1 = seg.fold(0, j); Mint sum2 = r1.sum + r1.count * Mint(A[i]); i64 count2 = r1.count; if (count2 > 0) { auto qj = seg2[j]; qj.sum += sum2; qj.count += count2; seg2.set(j, qj); } } return ans; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << solve() << endl; }