結果

問題 No.1293 2種類の道路
ユーザー stoq
提出日時 2020-11-28 10:03:19
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 104 ms / 2,000 ms
コード長 3,974 bytes
コンパイル時間 2,781 ms
コンパイル使用メモリ 219,240 KB
最終ジャッジ日時 2025-01-16 09:14:36
ジャッジサーバーID
(参考情報)
judge5 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define MOD_TYPE 2
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
struct UnionFind
{
vector<int> par;
vector<vector<int>> vertex;
UnionFind() {}
UnionFind(int n) : par(n), vertex(n)
{
par.resize(n);
vertex.resize(n);
iota(all(par), 0);
for (int i = 0; i < n; i++)
vertex[i].emplace_back(i);
}
int root(int x)
{
if (x == par[x])
return x;
return par[x] = root(par[x]);
}
//
int unite(int x, int y)
{
x = root(x);
y = root(y);
if (x == y)
return x;
if (vertex[x].size() < vertex[y].size())
swap(x, y);
par[y] = x;
while (!vertex[y].empty())
{
vertex[x].emplace_back(vertex[y].back());
vertex[y].pop_back();
}
return x;
}
bool same(int x, int y) { return root(x) == root(y); }
int size(int x) { return vertex[root(x)].size(); }
vector<int> operator[](int i) { return vertex[root(i)]; }
};
void solve()
{
int n, d, w;
cin >> n >> d >> w;
UnionFind uf1(n), uf2(n);
rep(i, d)
{
int a, b;
cin >> a >> b;
a--, b--;
uf1.unite(a, b);
}
rep(i, w)
{
int a, b;
cin >> a >> b;
a--, b--;
uf2.unite(a, b);
}
bool used[100010] = {};
ll ans = 0;
rep(i, n)
{
if (used[uf1.root(i)])
continue;
used[uf1.root(i)] = true;
set<int> roots;
ll sz1 = uf1.size(i);
ll sz2 = 0;
for (auto v : uf1[i])
{
roots.insert(uf2.root(v));
}
for (auto r : roots)
{
sz2 += uf2.size(r);
}
ans += sz1 * sz2 - sz1;
}
cout << ans << "\n";
}
int main()
{
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0