結果
問題 | No.1136 Four Points Tour |
ユーザー | firiexp |
提出日時 | 2020-11-28 17:09:30 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 4,948 bytes |
コンパイル時間 | 819 ms |
コンパイル使用メモリ | 92,248 KB |
最終ジャッジ日時 | 2024-11-14 23:55:31 |
合計ジャッジ時間 | 1,397 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of 'struct SquareMatrix<SemiRing, 2>': main.cpp:141:9: required from here main.cpp:54:9: error: 'SquareMatrix<H, SIZE>::A' has incomplete type 54 | mat A; | ^ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61, from main.cpp:3: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<modint<1000000007>, 2>, 2>' {aka 'struct std::array<std::array<modint<1000000007>, 2>, 2>'} 1595 | template<typename _Tp, size_t _Nm> struct array; | ^~~~~ main.cpp: In function 'int main()': main.cpp:142:8: error: variable 'ar x' has initializer but incomplete type 142 | ar x = {1, 0}; | ^ main.cpp:143:9: error: no match for 'operator[]' (operand types are 'SquareMatrix<SemiRing, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int') 143 | A[1][0] = 1; A[0][1] = 3; A[1][1] = 2; | ^ main.cpp:143:22: error: no match for 'operator[]' (operand types are 'SquareMatrix<SemiRing, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int') 143 | A[1][0] = 1; A[0][1] = 3; A[1][1] = 2; | ^ main.cpp:143:35: error: no match for 'operator[]' (operand types are 'SquareMatrix<SemiRing, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int') 143 | A[1][0] = 1; A[0][1] = 3; A[1][1] = 2; | ^
ソースコード
#include <iostream> #include <algorithm> #include <map> #include <set> #include <queue> #include <stack> #include <numeric> #include <bitset> #include <cmath> static const int MOD = 1000000007; using ll = long long; using u32 = unsigned; using u64 = unsigned long long; using namespace std; template<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208; template <u32 M> struct modint { u32 val; public: static modint raw(int v) { modint x; x.val = v; return x; } modint() : val(0) {} template <class T> modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = u32(x); } modint(bool v) { val = ((unsigned int)(v) % M); } modint& operator++() { val++; if (val == M) val = 0; return *this; } modint& operator--() { if (val == 0) val = M; val--; return *this; } modint operator++(int) { modint result = *this; ++*this; return result; } modint operator--(int) { modint result = *this; --*this; return result; } modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; } modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; } modint& operator*=(const modint& b) { u64 z = val; z *= b.val; val = (u32)(z % M); return *this; } modint& operator/=(const modint& b) { return *this = *this * b.inv(); } modint operator+() const { return *this; } modint operator-() const { return modint() - *this; } modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } modint inv() const { return pow(M-2); } friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; } friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; } friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; } friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; } friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; } friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; } }; using mint = modint<MOD>; template<class H, size_t SIZE> struct SquareMatrix { using T = typename H::T; using ar = array<T, SIZE>; using mat = array<ar, SIZE>; mat A; SquareMatrix() = default; static SquareMatrix I(){ SquareMatrix X{}; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { if(i == j) X[i][j] = H::one(); else X[i][j] = H::zero(); } } return X; } friend ar operator*=(ar &x, const SquareMatrix &Y) { ar ans{}; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add(ans[j], H::mul(x[i], Y[i][j])); } } x.swap(ans); return x; } friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; } inline const ar &operator[](int k) const{ return (A.at(k)); } inline ar &operator[](int k) { return (A.at(k)); } SquareMatrix &operator+= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add((*this)[i][j], B[i][j]); } } return (*this); } SquareMatrix &operator-= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add((*this)[i][j], -B[i][j]); } } return (*this); } SquareMatrix &operator*=(const SquareMatrix &B) { SquareMatrix C{}; for (int i = 0; i < SIZE; ++i) { for (int k = 0; k < SIZE; ++k) { for (int j = 0; j < SIZE; ++j) { H::add(C[i][j], H::mul((*this)[i][k], B[k][j])); } } } A.swap(C.A); return (*this); } SquareMatrix pow(ll n) const { SquareMatrix a = (*this), res = I(); while(n > 0){ if(n & 1) res *= a; a *= a; n >>= 1; } return res; } SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;} SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;} SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;} }; struct SemiRing { using T = mint; static inline T mul(T x, T y){ return x * y; } static inline void add(T &x, T y){ x += y; } static inline T one(){ return 1; } static inline T zero(){ return 0; } }; using ar = array<SemiRing::T, 2>; using mat = SquareMatrix<SemiRing, 2>; int main() { ll n; cin >> n; mat A; ar x = {1, 0}; A[1][0] = 1; A[0][1] = 3; A[1][1] = 2; x *= A.pow(n); cout << x[0].val << "\n"; return 0; }