結果
| 問題 |
No.1136 Four Points Tour
|
| ユーザー |
|
| 提出日時 | 2020-11-28 17:09:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,948 bytes |
| コンパイル時間 | 1,007 ms |
| コンパイル使用メモリ | 89,396 KB |
| 最終ジャッジ日時 | 2025-01-16 09:27:52 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of ‘struct SquareMatrix<SemiRing, 2>’:
main.cpp:141:9: required from here
main.cpp:54:9: error: ‘SquareMatrix<H, SIZE>::A’ has incomplete type
54 | mat A;
| ^
In file included from /usr/include/c++/13/bits/memory_resource.h:47,
from /usr/include/c++/13/string:58,
from /usr/include/c++/13/bits/locale_classes.h:40,
from /usr/include/c++/13/bits/ios_base.h:41,
from /usr/include/c++/13/ios:44,
from /usr/include/c++/13/ostream:40,
from /usr/include/c++/13/iostream:41,
from main.cpp:1:
/usr/include/c++/13/tuple:2019:45: note: declaration of ‘using SquareMatrix<SemiRing, 2>::mat = struct std::array<std::array<modint<1000000007>, 2>, 2>’ {aka ‘struct std::array<std::array<modint<1000000007>, 2>, 2>’}
2019 | template<typename _Tp, size_t _Nm> struct array;
| ^~~~~
main.cpp: In function ‘int main()’:
main.cpp:142:8: error: variable ‘ar x’ has initializer but incomplete type
142 | ar x = {1, 0};
| ^
main.cpp:143:9: error: no match for ‘operator[]’ (operand types are ‘SquareMatrix<SemiRing, 2>::ar’ {aka ‘std::array<modint<1000000007>, 2>’} and ‘int’)
143 | A[1][0] = 1; A[0][1] = 3; A[1][1] = 2;
| ^
main.cpp:143:22: error: no match for ‘operator[]’ (operand types are ‘SquareMatrix<SemiRing, 2>::ar’ {aka ‘std::array<modint<1000000007>, 2>’} and ‘int’)
143 | A[1][0] = 1; A[0][1] = 3; A[1][1] = 2;
| ^
main.cpp:143:35: error: no match for ‘operator[]’ (operand types are ‘SquareMatrix<SemiRing, 2>::ar’ {aka ‘std::array<modint<1000000007>, 2>’} and ‘int’)
143 | A[1][0] = 1; A[0][1] = 3; A[1][1] = 2;
| ^
ソースコード
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208;
template <u32 M>
struct modint {
u32 val;
public:
static modint raw(int v) { modint x; x.val = v; return x; }
modint() : val(0) {}
template <class T>
modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = u32(x); }
modint(bool v) { val = ((unsigned int)(v) % M); }
modint& operator++() { val++; if (val == M) val = 0; return *this; }
modint& operator--() { if (val == 0) val = M; val--; return *this; }
modint operator++(int) { modint result = *this; ++*this; return result; }
modint operator--(int) { modint result = *this; --*this; return result; }
modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; }
modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; }
modint& operator*=(const modint& b) { u64 z = val; z *= b.val; val = (u32)(z % M); return *this; }
modint& operator/=(const modint& b) { return *this = *this * b.inv(); }
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; }
modint inv() const { return pow(M-2); }
friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; }
friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; }
friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; }
};
using mint = modint<MOD>;
template<class H, size_t SIZE>
struct SquareMatrix {
using T = typename H::T;
using ar = array<T, SIZE>;
using mat = array<ar, SIZE>;
mat A;
SquareMatrix() = default;
static SquareMatrix I(){
SquareMatrix X{};
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
if(i == j) X[i][j] = H::one();
else X[i][j] = H::zero();
}
}
return X;
}
friend ar operator*=(ar &x, const SquareMatrix &Y) {
ar ans{};
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add(ans[j], H::mul(x[i], Y[i][j]));
}
}
x.swap(ans);
return x;
}
friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; }
inline const ar &operator[](int k) const{ return (A.at(k)); }
inline ar &operator[](int k) { return (A.at(k)); }
SquareMatrix &operator+= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add((*this)[i][j], B[i][j]);
}
}
return (*this);
}
SquareMatrix &operator-= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add((*this)[i][j], -B[i][j]);
}
}
return (*this);
}
SquareMatrix &operator*=(const SquareMatrix &B) {
SquareMatrix C{};
for (int i = 0; i < SIZE; ++i) {
for (int k = 0; k < SIZE; ++k) {
for (int j = 0; j < SIZE; ++j) {
H::add(C[i][j], H::mul((*this)[i][k], B[k][j]));
}
}
}
A.swap(C.A);
return (*this);
}
SquareMatrix pow(ll n) const {
SquareMatrix a = (*this), res = I();
while(n > 0){
if(n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}
SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}
SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}
};
struct SemiRing {
using T = mint;
static inline T mul(T x, T y){ return x * y; }
static inline void add(T &x, T y){ x += y; }
static inline T one(){ return 1; }
static inline T zero(){ return 0; }
};
using ar = array<SemiRing::T, 2>;
using mat = SquareMatrix<SemiRing, 2>;
int main() {
ll n;
cin >> n;
mat A;
ar x = {1, 0};
A[1][0] = 1; A[0][1] = 3; A[1][1] = 2;
x *= A.pow(n);
cout << x[0].val << "\n";
return 0;
}