結果
問題 | No.1127 変形パスカルの三角形 |
ユーザー | firiexp |
提出日時 | 2020-11-29 01:36:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 8 ms / 1,500 ms |
コード長 | 3,427 bytes |
コンパイル時間 | 1,271 ms |
コンパイル使用メモリ | 104,532 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-13 01:46:51 |
合計ジャッジ時間 | 2,555 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 7 ms
6,940 KB |
testcase_02 | AC | 6 ms
6,944 KB |
testcase_03 | AC | 5 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 4 ms
6,940 KB |
testcase_06 | AC | 8 ms
6,940 KB |
testcase_07 | AC | 3 ms
6,944 KB |
testcase_08 | AC | 4 ms
6,940 KB |
testcase_09 | AC | 7 ms
6,940 KB |
testcase_10 | AC | 7 ms
6,944 KB |
testcase_11 | AC | 5 ms
6,940 KB |
testcase_12 | AC | 5 ms
6,940 KB |
testcase_13 | AC | 6 ms
6,940 KB |
testcase_14 | AC | 4 ms
6,944 KB |
testcase_15 | AC | 3 ms
6,940 KB |
testcase_16 | AC | 5 ms
6,940 KB |
testcase_17 | AC | 4 ms
6,948 KB |
testcase_18 | AC | 5 ms
6,944 KB |
testcase_19 | AC | 6 ms
6,944 KB |
testcase_20 | AC | 6 ms
6,944 KB |
testcase_21 | AC | 6 ms
6,940 KB |
testcase_22 | AC | 3 ms
6,940 KB |
testcase_23 | AC | 6 ms
6,940 KB |
testcase_24 | AC | 5 ms
6,944 KB |
testcase_25 | AC | 5 ms
6,940 KB |
testcase_26 | AC | 5 ms
6,944 KB |
testcase_27 | AC | 6 ms
6,944 KB |
testcase_28 | AC | 5 ms
6,944 KB |
testcase_29 | AC | 4 ms
6,940 KB |
testcase_30 | AC | 3 ms
6,944 KB |
testcase_31 | AC | 6 ms
6,940 KB |
ソースコード
#include <iostream> #include <algorithm> #include <map> #include <set> #include <queue> #include <stack> #include <numeric> #include <bitset> #include <cmath> static const int MOD = 1000000007; using ll = long long; using u32 = unsigned; using u64 = unsigned long long; using namespace std; template<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208; template <u32 M> struct modint { u32 val; public: static modint raw(int v) { modint x; x.val = v; return x; } modint() : val(0) {} template <class T> modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = u32(x); } modint(bool v) { val = ((unsigned int)(v) % M); } modint& operator++() { val++; if (val == M) val = 0; return *this; } modint& operator--() { if (val == 0) val = M; val--; return *this; } modint operator++(int) { modint result = *this; ++*this; return result; } modint operator--(int) { modint result = *this; --*this; return result; } modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; } modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; } modint& operator*=(const modint& b) { u64 z = val; z *= b.val; val = (u32)(z % M); return *this; } modint& operator/=(const modint& b) { return *this = *this * b.inv(); } modint operator+() const { return *this; } modint operator-() const { return modint() - *this; } modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } modint inv() const { return pow(M-2); } friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; } friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; } friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; } friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; } friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; } friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; } }; using mint = modint<MOD>; class Factorial { vector<mint> facts, factinv; public: explicit Factorial(int n) : facts(n+1), factinv(n+1) { facts[0] = 1; for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1] * mint(i); factinv[n] = facts[n].inv(); for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1); } mint fact(int k) const { if(k >= 0) return facts[k]; else return factinv[-k]; } mint operator[](const int &k) const { if(k >= 0) return facts[k]; else return factinv[-k]; } mint C(int p, int q) const { if(q < 0 || p < q) return 0; return facts[p] * factinv[q] * factinv[p-q]; } mint P(int p, int q) const { if(q < 0 || p < q) return 0; return facts[p] * factinv[p-q]; } mint H(int p, int q) const { if(p < 0 || q < 0) return 0; return q == 0 ? 1 : C(p+q-1, q); } }; int main() { ll a, b; int n, k; cin >> a >> b >> n >> k; mint A = a, B = b; n--; k--; Factorial f(n); printf("%d\n", (A*f.C(n, k)+B*f.C(n, k-1)).val); mint ans = 0; for (int i = 0; i <= n+1; ++i) { mint p = f.C(n, i)*A + f.C(n, i-1)*B; ans += p*p; } cout << ans.val << "\n"; return 0; }