結果
問題 | No.1136 Four Points Tour |
ユーザー | こまる |
提出日時 | 2020-11-29 14:32:34 |
言語 | Haskell (9.8.2) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 12,438 bytes |
コンパイル時間 | 1,742 ms |
コンパイル使用メモリ | 203,264 KB |
最終ジャッジ日時 | 2024-11-14 23:55:33 |
合計ジャッジ時間 | 2,180 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default Main.hs:11:14: warning: [GHC-53692] [-Wdeprecated-flags] -XTypeInType is deprecated: use -XDataKinds and -XPolyKinds instead | 11 | {-# LANGUAGE TypeInType #-} | ^^^^^^^^^^ [1 of 2] Compiling Main ( Main.hs, Main.o ) Main.hs:120:10: error: [GHC-88464] Variable not in scope: lift :: ST s Int -> ContT () (ST s) Int | 120 | c <- lift $ check b (-1) i | ^^^^ Main.hs:123:9: error: [GHC-88464] Variable not in scope: lift :: ST s () -> ContT () (ST s) a5 | 123 | lift $ writeSTRef retRef 0 | ^^^^ Main.hs:126:9: error: [GHC-88464] Variable not in scope: when :: Bool -> a3 -> ContT () (ST s) a4 | 126 | when (c /= i) $ lift $ modifySTRef retRef (*(-1)) | ^^^^ Main.hs:126:25: error: [GHC-88464] Variable not in scope: lift :: ST s () -> a3 | 126 | when (c /= i) $ lift $ modifySTRef retRef (*(-1)) | ^^^^ Main.hs:127:24: error: [GHC-88464] Variable not in scope: lift :: m0 () -> ContT () (ST s) () | 127 | rep sz $ \j -> lift $ VUM.unsafeSwap b (c * sz + j) (i * sz + j) | ^^^^ Main.hs:129:9: error: [GHC-88464] Variable not in scope: lift :: ST s () -> ContT () (ST s) a2 | 129 | lift $ modifySTRef retRef (*itemii) | ^^^^ Main.hs:143:9: error: [GHC-88464] Variable not in scope: when :: Bool -> ContT () (ST s) b2 -> ContT () (ST s) () | 143 | when (item /= 0) $ do | ^^^^ Main.hs:144:11: error: [GHC-88464] Variable not in scope: lift :: ST s () -> ContT () (ST s) a1 | 144 | lift $ writeSTRef pRef j | ^^^^
ソースコード
{-# OPTIONS_GHC -mavx2 #-} {-# OPTIONS_GHC -O3 #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE UnboxedTuples #-} import Control.Monad.Cont import Control.Monad.ST import Data.Bits import Data.Bool import Data.Coerce import Data.STRef.Strict import qualified Data.Ratio as R import GHC.Exts import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Generic as VG import qualified Data.Vector.Generic.Mutable as VGM import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM main :: IO () main = do n <- readLn :: IO Int let x = buildMatrix $ VU.fromList [0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0] print $ (x <|^|> n) VU.! 0 ------------------------------------------------------------------------------- -- square matrix ------------------------------------------------------------------------------- type SquareMatrixMint = VU.Vector Mint infixr 8 <|^|> infixr 7 <|#|> infixl 7 <|*|> infixl 6 <|+|>, <|-|> matO :: Int -> SquareMatrixMint matO sz = VU.replicate sz (0 :: Mint) {-# INLINE matO #-} matE :: Int -> SquareMatrixMint matE sz = VU.imap (\i _ -> bool 0 1 (i `mod` (sz + 1) == 0)) $ VU.replicate (sz * sz) (0 :: Mint) {-# INLINE matE #-} buildMatrix :: VU.Vector Int -> SquareMatrixMint buildMatrix = VU.map mint {-# INLINE buildMatrix #-} (<|+|>) :: SquareMatrixMint -> SquareMatrixMint -> SquareMatrixMint a <|+|> b = VU.zipWith (+) a b {-# INLINE (<|+|>) #-} (<|-|>) :: SquareMatrixMint -> SquareMatrixMint -> SquareMatrixMint a <|-|> b = VU.zipWith (-) a b {-# INLINE (<|-|>) #-} (<|*|>) :: SquareMatrixMint -> SquareMatrixMint -> SquareMatrixMint a <|*|> b = VU.create $ do c <- VUM.unsafeNew m :: ST s (VUM.STVector s Mint) rep sz $ \i -> rep sz $ \j -> rep sz $ \k -> VUM.unsafeModify c (+ (a VU.! (i * sz + k)) * (b VU.! (k * sz + j))) (i * sz + j) return c where !m = VU.length a !sz = floor . sqrt . fromIntegral $ m (<|^|>) :: SquareMatrixMint -> Int -> SquareMatrixMint a <|^|> n | n == 1 = a | n == 0 = matE sz | even n = z <|*|> z | otherwise = a <|*|> (z <|*|> z) where z = a <|^|> (n `div` 2) !m = VU.length a !sz = floor . sqrt . fromIntegral $ m (<|#|>) :: Int -> SquareMatrixMint -> SquareMatrixMint n <|#|> a = VU.map (* mint n) a {-# INLINE (<|#|>) #-} transposeMat :: SquareMatrixMint -> SquareMatrixMint transposeMat a = VU.create $ do let !n = VU.length a !sz = floor . sqrt . fromIntegral $ n b <- VUM.unsafeNew n :: ST s (VUM.STVector s Mint) rep sz $ \i -> rep sz $ \j -> do VUM.unsafeWrite b (j * sz + i) (a VU.! (i * sz + j)) return b takeNthRow :: Int -> SquareMatrixMint -> VU.Vector Mint takeNthRow n a = VU.create $ do let !m = VU.length a !sz = floor . sqrt . fromIntegral $ m b <- VUM.unsafeNew sz :: ST s (VUM.STVector s Mint) rep sz $ \i -> VUM.unsafeWrite b i (a VU.! ((n - 1) * sz + i)) return b takeNthCol :: Int -> SquareMatrixMint -> VU.Vector Mint takeNthCol n a = VU.create $ do let !m = VU.length a !sz = floor . sqrt . fromIntegral $ m b <- VUM.unsafeNew sz :: ST s (VUM.STVector s Mint) rep sz $ \i -> VUM.unsafeWrite b i (a VU.! (i * sz + (n - 1))) return b determinant :: Int -> SquareMatrixMint -> Mint determinant sz a = runST $ do retRef <- newSTRef (1 :: Mint) b <- VU.unsafeThaw a withBreakST $ \break -> rep sz $ \i -> do c <- lift $ check b (-1) i if c == (-1) then do lift $ writeSTRef retRef 0 break () else do when (c /= i) $ lift $ modifySTRef retRef (*(-1)) rep sz $ \j -> lift $ VUM.unsafeSwap b (c * sz + j) (i * sz + j) itemii <- VUM.unsafeRead b (i * sz + i) lift $ modifySTRef retRef (*itemii) let inva = (1 :: Mint) / itemii range (i + 1) (sz - 1) $ \j -> do a0 <- VUM.unsafeRead b (j * sz + i) range i (sz - 1) $ \k -> do item <- VUM.unsafeRead b (i * sz + k) VUM.unsafeModify b (subtract (inva * a0 * item)) (j * sz + k) readSTRef retRef where check :: VUM.STVector s Mint -> Int -> Int -> ST s Int check mvec ptr idx = do pRef <- newSTRef ptr withBreakST $ \break -> range idx (sz - 1) $ \j -> do item <- VUM.unsafeRead mvec (j * sz + idx) when (item /= 0) $ do lift $ writeSTRef pRef j break () readSTRef pRef trace :: Int -> SquareMatrixMint -> Mint trace n = VU.ifoldl' (\a i b -> if i `mod` (n + 1) == 0 then a + b else a) (0 :: Mint) ------------------------------------------------------------------------------- -- mint ------------------------------------------------------------------------------- #define MOD 1000000007 modulus :: Num a => a modulus = MOD {-# INLINE modulus #-} infixr 8 ^% infixl 7 *%, /% infixl 6 +%, -% (+%) :: Int -> Int -> Int (I# x#) +% (I# y#) = case x# +# y# of r# -> I# (r# -# ((r# >=# MOD#) *# MOD#)) {-# INLINE (+%) #-} (-%) :: Int -> Int -> Int (I# x#) -% (I# y#) = case x# -# y# of r# -> I# (r# +# ((r# <# 0#) *# MOD#)) {-# INLINE (-%) #-} (*%) :: Int -> Int -> Int (I# x#) *% (I# y#) = case timesWord# (int2Word# x#) (int2Word# y#) of z# -> case timesWord2# z# im# of (# q#, _ #) -> case minusWord# z# (timesWord# q# m#) of v# | isTrue# (geWord# v# m#) -> I# (word2Int# (plusWord# v# m#)) | otherwise -> I# (word2Int# v#) where m# = int2Word# MOD# im# = plusWord# (quotWord# 0xffffffffffffffff## m#) 1## {-# INLINE (*%) #-} (/%) :: Int -> Int -> Int (I# x#) /% (I# y#) = go# y# MOD# 1# 0# where go# a# b# u# v# | isTrue# (b# ># 0#) = case a# `quotInt#` b# of q# -> go# b# (a# -# (q# *# b#)) v# (u# -# (q# *# v#)) | otherwise = I# ((x# *# (u# +# MOD#)) `remInt#` MOD#) {-# INLINE (/%) #-} (^%) :: Int -> Int -> Int x ^% n | n > 0 = go 1 x n | n == 0 = 1 | otherwise = go 1 (1 /% x) (-n) where go !acc !y !m | m .&. 1 == 0 = go acc (y *% y) (unsafeShiftR m 1) | m == 1 = acc *% y | otherwise = go (acc *% y) (y *% y) (unsafeShiftR (m - 1) 1) newtype Mint = Mint { getMint :: Int } deriving newtype (Eq, Ord, Read, Show, Real) mint :: Integral a => a -> Mint mint x = fromIntegral $ mod (fromIntegral x) MOD {-# INLINE mint #-} mintValidate :: Mint -> Bool mintValidate (Mint x) = 0 <= x && x < MOD {-# INLINE mintValidate #-} instance Bounded Mint where minBound = Mint 0 maxBound = Mint $ modulus - 1 instance Enum Mint where toEnum = mint fromEnum = coerce instance Integral Mint where quotRem x y = (x / y, x - x / y * y) toInteger = coerce (toInteger @Int) instance Num Mint where (+) = coerce (+%) (-) = coerce (-%) (*) = coerce (*%) abs = id signum = const (Mint 1) fromInteger x = coerce @Int @Mint . fromInteger $ mod x modulus instance Fractional Mint where (/) = coerce (/%) fromRational q = fromInteger (R.numerator q) / fromInteger (R.denominator q) newtype instance VUM.MVector s Mint = MV_Mint (VUM.MVector s Int) newtype instance VU.Vector Mint = V_Mint (VU.Vector Int) instance VU.Unbox Mint instance VGM.MVector VUM.MVector Mint where basicLength (MV_Mint v) = VGM.basicLength v {-# INLINE basicLength #-} basicUnsafeSlice i n (MV_Mint v) = MV_Mint $ VGM.basicUnsafeSlice i n v {-# INLINE basicUnsafeSlice #-} basicOverlaps (MV_Mint v1) (MV_Mint v2) = VGM.basicOverlaps v1 v2 {-# INLINE basicOverlaps #-} basicUnsafeNew n = MV_Mint `fmap` VGM.basicUnsafeNew n {-# INLINE basicUnsafeNew #-} basicInitialize (MV_Mint v) = VGM.basicInitialize v {-# INLINE basicInitialize #-} basicUnsafeReplicate n x = MV_Mint `fmap` VGM.basicUnsafeReplicate n (coerce x) {-# INLINE basicUnsafeReplicate #-} basicUnsafeRead (MV_Mint v) i = coerce `fmap` VGM.basicUnsafeRead v i {-# INLINE basicUnsafeRead #-} basicUnsafeWrite (MV_Mint v) i x = VGM.basicUnsafeWrite v i (coerce x) {-# INLINE basicUnsafeWrite #-} basicClear (MV_Mint v) = VGM.basicClear v {-# INLINE basicClear #-} basicSet (MV_Mint v) x = VGM.basicSet v (coerce x) {-# INLINE basicSet #-} basicUnsafeCopy (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeCopy v1 v2 {-# INLINE basicUnsafeCopy #-} basicUnsafeMove (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeMove v1 v2 {-# INLINE basicUnsafeMove #-} basicUnsafeGrow (MV_Mint v) n = MV_Mint `fmap` VGM.basicUnsafeGrow v n {-# INLINE basicUnsafeGrow #-} instance VG.Vector VU.Vector Mint where basicUnsafeFreeze (MV_Mint v) = V_Mint `fmap` VG.basicUnsafeFreeze v {-# INLINE basicUnsafeFreeze #-} basicUnsafeThaw (V_Mint v) = MV_Mint `fmap` VG.basicUnsafeThaw v {-# INLINE basicUnsafeThaw #-} basicLength (V_Mint v) = VG.basicLength v {-# INLINE basicLength #-} basicUnsafeSlice i n (V_Mint v) = V_Mint $ VG.basicUnsafeSlice i n v {-# INLINE basicUnsafeSlice #-} basicUnsafeIndexM (V_Mint v) i = coerce `fmap` VG.basicUnsafeIndexM v i {-# INLINE basicUnsafeIndexM #-} basicUnsafeCopy (MV_Mint mv) (V_Mint v) = VG.basicUnsafeCopy mv v elemseq _ = seq {-# INLINE elemseq #-} ------------------------------------------------------------------------------- -- for ------------------------------------------------------------------------------- rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (streamG 0 (n - 1) const 0 (+) 1) {-# INLINE rep #-} rep' :: Monad m => Int -> (Int -> m ()) -> m () rep' n = flip VFSM.mapM_ (streamG 0 n const 0 (+) 1) {-# INLINE rep' #-} rep1 :: Monad m => Int -> (Int -> m ()) -> m () rep1 n = flip VFSM.mapM_ (streamG 1 (n - 1) const 0 (+) 1) {-# INLINE rep1 #-} rep1' :: Monad m => Int -> (Int -> m ()) -> m () rep1' n = flip VFSM.mapM_ (streamG 1 n const 0 (+) 1) {-# INLINE rep1' #-} rev :: Monad m => Int -> (Int -> m ()) -> m () rev n = flip VFSM.mapM_ (streamRG (n - 1) 0 const 0 (-) 1) {-# INLINE rev #-} rev' :: Monad m => Int -> (Int -> m ()) -> m () rev' n = flip VFSM.mapM_ (streamRG n 0 const 0 (-) 1) {-# INLINE rev' #-} rev1 :: Monad m => Int -> (Int -> m ()) -> m () rev1 n = flip VFSM.mapM_ (streamRG (n - 1) 1 const 0 (-) 1) {-# INLINE rev1 #-} rev1' :: Monad m => Int -> (Int -> m ()) -> m () rev1' n = flip VFSM.mapM_ (streamRG n 1 const 0 (-) 1) {-# INLINE rev1' #-} range :: Monad m => Int -> Int -> (Int -> m ()) -> m () range l r = flip VFSM.mapM_ (streamG l r const 0 (+) 1) {-# INLINE range #-} rangeR :: Monad m => Int -> Int -> (Int -> m ()) -> m () rangeR r l = flip VFSM.mapM_ (streamRG r l const 0 (-) 1) {-# INLINE rangeR #-} forP :: Monad m => Int -> (Int -> m ()) -> m () forP p = flip VFSM.mapM_ (streamG 2 p (^) 2 (+) 1) {-# INLINE forP #-} forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m () forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d) {-# INLINE forG #-} forRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m () forRG r l f p g d = flip VFSM.mapM_ (streamRG r l f p g d) {-# INLINE forRG #-} streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int streamG !l !r !f !p !g !d = VFSM.Stream step l where step x | f x p <= r = return $ VFSM.Yield x (g x d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamG #-} streamRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int streamRG !r !l !f !p !g !d = VFSM.Stream step r where step x | f x p >= l = return $ VFSM.Yield x (g x d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamRG #-} withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r withBreakIO = flip runContT pure . callCC {-# INLINE withBreakIO #-} withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r withBreakST = flip runContT pure . callCC {-# INLINE withBreakST #-}