結果

問題 No.1304 あなたは基本が何か知っていますか?私は知っています.
ユーザー くれちーくれちー
提出日時 2020-12-01 01:59:21
言語 Rust
(1.77.0 + proconio)
結果
MLE  
(最新)
AC  
(最初)
実行時間 -
コード長 11,319 bytes
コンパイル時間 14,351 ms
コンパイル使用メモリ 388,784 KB
実行使用メモリ 684,980 KB
最終ジャッジ日時 2024-06-12 08:52:02
合計ジャッジ時間 79,857 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
10,752 KB
testcase_01 MLE -
testcase_02 AC 1 ms
10,880 KB
testcase_03 MLE -
testcase_04 AC 238 ms
84,616 KB
testcase_05 MLE -
testcase_06 AC 1 ms
10,880 KB
testcase_07 MLE -
testcase_08 AC 80 ms
10,880 KB
testcase_09 MLE -
testcase_10 AC 67 ms
26,960 KB
testcase_11 MLE -
testcase_12 AC 78 ms
26,960 KB
testcase_13 MLE -
testcase_14 AC 59 ms
26,832 KB
testcase_15 MLE -
testcase_16 AC 69 ms
26,832 KB
testcase_17 MLE -
testcase_18 AC 67 ms
26,828 KB
testcase_19 MLE -
testcase_20 AC 1 ms
10,880 KB
testcase_21 MLE -
testcase_22 AC 78 ms
26,964 KB
testcase_23 MLE -
testcase_24 AC 242 ms
84,484 KB
testcase_25 MLE -
testcase_26 AC 60 ms
10,880 KB
testcase_27 MLE -
testcase_28 AC 20 ms
10,880 KB
testcase_29 MLE -
testcase_30 AC 1 ms
10,880 KB
testcase_31 MLE -
testcase_32 AC 186 ms
12,184 KB
testcase_33 MLE -
testcase_34 AC 149 ms
11,508 KB
testcase_35 MLE -
testcase_36 AC 1 ms
10,880 KB
testcase_37 AC 1 ms
6,944 KB
testcase_38 AC 1 ms
5,376 KB
testcase_39 AC 1 ms
5,376 KB
testcase_40 AC 2 ms
5,376 KB
testcase_41 AC 1 ms
5,376 KB
testcase_42 AC 3 ms
5,376 KB
testcase_43 AC 2 ms
5,376 KB
testcase_44 AC 1 ms
5,376 KB
04_evil_A_01 AC 1 ms
5,376 KB
04_evil_A_02 AC 1 ms
5,376 KB
04_evil_A_03 AC 1 ms
5,376 KB
04_evil_A_04 AC 1 ms
5,376 KB
04_evil_A_05 AC 1 ms
5,376 KB
04_evil_A_06 AC 237 ms
79,100 KB
04_evil_A_07 AC 237 ms
78,980 KB
04_evil_A_08 AC 243 ms
78,984 KB
04_evil_A_09 AC 249 ms
79,108 KB
04_evil_A_10 AC 248 ms
78,980 KB
05_evil_B_01 TLE -
05_evil_B_02 TLE -
05_evil_B_03 TLE -
05_evil_B_04 TLE -
05_evil_B_05 TLE -
05_evil_B_06 TLE -
05_evil_B_07 TLE -
05_evil_B_08 TLE -
05_evil_B_09 TLE -
05_evil_B_10 TLE -
06_evil_C_01 TLE -
06_evil_C_02 TLE -
06_evil_C_03 TLE -
06_evil_C_04 TLE -
06_evil_C_05 TLE -
06_evil_C_06 TLE -
06_evil_C_07 TLE -
06_evil_C_08 TLE -
06_evil_C_09 TLE -
06_evil_C_10 MLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

// The main code is at the very bottom.

#[allow(unused_imports)]
use {
  lib::byte::ByteChar,
  std::cell::{Cell, RefCell},
  std::cmp::{
    self,
    Ordering::{self, *},
    Reverse,
  },
  std::collections::*,
  std::convert::identity,
  std::fmt::{self, Debug, Display, Formatter},
  std::io::prelude::*,
  std::iter::{self, FromIterator},
  std::marker::PhantomData,
  std::mem,
  std::num::Wrapping,
  std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
  std::process,
  std::rc::Rc,
  std::thread,
  std::time::{Duration, Instant},
  std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};

#[allow(unused_imports)]
#[macro_use]
pub mod lib {
  pub mod byte {
    pub use self::byte_char::*;

    mod byte_char {
      use std::error::Error;
      use std::fmt::{self, Debug, Display, Formatter};
      use std::str::FromStr;

      #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
      #[repr(transparent)]
      pub struct ByteChar(pub u8);

      impl Debug for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "b'{}'", self.0 as char)
        }
      }

      impl Display for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "{}", self.0 as char)
        }
      }

      impl FromStr for ByteChar {
        type Err = ParseByteCharError;

        fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
          match s.as_bytes().len() {
            1 => Ok(ByteChar(s.as_bytes()[0])),
            0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
            _ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
          }
        }
      }

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      pub struct ParseByteCharError {
        kind: ParseByteCharErrorKind,
      }

      impl Display for ParseByteCharError {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          f.write_str(match self.kind {
            ParseByteCharErrorKind::EmptyStr => "empty string",
            ParseByteCharErrorKind::TooManyBytes => "too many bytes",
          })
        }
      }

      impl Error for ParseByteCharError {}

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      enum ParseByteCharErrorKind {
        EmptyStr,
        TooManyBytes,
      }

      impl From<ParseByteCharErrorKind> for ParseByteCharError {
        fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
          ParseByteCharError { kind }
        }
      }
    }
  }

  pub mod io {
    pub use self::scanner::*;

    mod scanner {
      use std::io::{self, BufRead};
      use std::iter;
      use std::str::FromStr;

      #[derive(Debug)]
      pub struct Scanner<R> {
        reader: R,
        buf: String,
        pos: usize,
      }

      impl<R: BufRead> Scanner<R> {
        pub fn new(reader: R) -> Self {
          Scanner {
            reader,
            buf: String::new(),
            pos: 0,
          }
        }

        pub fn next(&mut self) -> io::Result<&str> {
          let start = loop {
            match self.rest().find(|c| c != ' ') {
              Some(i) => break i,
              None => self.fill_buf()?,
            }
          };
          self.pos += start;
          let len = self.rest().find(' ').unwrap_or(self.rest().len());
          let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
          self.pos += len;
          Ok(s)
        }

        pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
        where
          T: FromStr,
        {
          Ok(self.next()?.parse())
        }

        pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
        where
          T: FromStr,
        {
          iter::repeat_with(|| self.parse_next()).take(n).collect()
        }

        pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
        where
          F: FnMut(u8) -> T,
        {
          Ok(self.next()?.bytes().map(&mut f).collect())
        }

        pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
        where
          F: FnMut(u8) -> T,
        {
          iter::repeat_with(|| self.map_next_bytes(&mut f))
            .take(n)
            .collect()
        }

        fn rest(&self) -> &str {
          &self.buf[self.pos..]
        }

        fn fill_buf(&mut self) -> io::Result<()> {
          self.buf.clear();
          self.pos = 0;
          let read = self.reader.read_line(&mut self.buf)?;
          if read == 0 {
            return Err(io::ErrorKind::UnexpectedEof.into());
          }
          if *self.buf.as_bytes().last().unwrap() == b'\n' {
            self.buf.pop();
          }
          Ok(())
        }
      }
    }
  }
}

mod automaton_dp {
  use std::{collections::HashMap, hash::Hash, mem};

  pub trait Monoid {
    fn op(&self, rhs: &Self) -> Self;
    fn identity() -> Self;
  }

  impl<T0: Monoid, T1: Monoid> Monoid for (T0, T1) {
    fn op(&self, rhs: &Self) -> Self {
      (self.0.op(&rhs.0), self.1.op(&rhs.1))
    }

    fn identity() -> Self {
      (T0::identity(), T1::identity())
    }
  }

  pub trait Dfa {
    type Char;
    type State;

    fn initial_state(&self) -> Option<Self::State>;
    fn next_state(&self, state: &Self::State, c: &Self::Char) -> Option<Self::State>;
    fn is_accept_state(&self, state: &Self::State) -> bool;
  }

  pub fn automaton_dp<A, M>(
    dfa: A,
    sigma: impl IntoIterator<Item = A::Char> + Clone,
    len: usize,
    mut mul: impl FnMut(&M, &A::Char) -> M,
    e: M,
  ) -> M
  where
    A: Dfa,
    A::State: Eq + Hash,
    M: Monoid,
  {
    let mut dp = HashMap::<A::State, M>::new();
    let mut dp_next = HashMap::<A::State, M>::new();

    if let Some(initial_state) = dfa.initial_state() {
      dp.insert(initial_state, e);
    }
    for _ in 0..len {
      for (state, value) in dp.drain() {
        for c in sigma.clone() {
          if let Some(next_state) = dfa.next_state(&state, &c) {
            let value = mul(&value, &c);
            dp_next
              .entry(next_state)
              .and_modify(|acc| *acc = acc.op(&value))
              .or_insert(value);
          }
        }
      }
      mem::swap(&mut dp, &mut dp_next);
      dp_next.clear();
    }

    let mut acc = M::identity();
    for (state, value) in dp {
      if dfa.is_accept_state(&state) {
        acc = acc.op(&value);
      }
    }
    acc
  }

  pub struct And<A0, A1>(pub A0, pub A1);

  impl<A0, A1> Dfa for And<A0, A1>
  where
    A0: Dfa,
    A1: Dfa<Char = A0::Char>,
  {
    type Char = A0::Char;
    type State = (A0::State, A1::State);

    fn initial_state(&self) -> Option<Self::State> {
      match (self.0.initial_state(), self.1.initial_state()) {
        (Some(st0), Some(st1)) => Some((st0, st1)),
        _ => None,
      }
    }

    fn next_state(&self, state: &Self::State, c: &Self::Char) -> Option<Self::State> {
      match (
        self.0.next_state(&state.0, c),
        self.1.next_state(&state.1, c),
      ) {
        (Some(st0), Some(st1)) => Some((st0, st1)),
        _ => None,
      }
    }

    fn is_accept_state(&self, state: &Self::State) -> bool {
      self.0.is_accept_state(&state.0) && self.1.is_accept_state(&state.1)
    }
  }
}

#[allow(unused_macros)]
macro_rules! eprint {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprint!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! eprintln {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprintln!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! dbg {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::dbg!($($arg)*)
    } else {
      ($($arg)*)
    }
  };
}

const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024);
const INTERACTIVE: bool = false;

fn main() -> std::io::Result<()> {
  match CUSTOM_STACK_SIZE_MIB {
    Some(stack_size_mib) => std::thread::Builder::new()
      .name("run_solver".to_owned())
      .stack_size(stack_size_mib * 1024 * 1024)
      .spawn(run_solver)?
      .join()
      .unwrap(),
    None => run_solver(),
  }
}

fn run_solver() -> std::io::Result<()> {
  let stdin = std::io::stdin();
  let reader = stdin.lock();
  let stdout = std::io::stdout();
  let writer = stdout.lock();
  macro_rules! with_wrapper {
    ($($wrapper:expr)?) => {{
      let mut writer = $($wrapper)?(writer);
      solve(reader, &mut writer)?;
      writer.flush()
    }};
  }
  if cfg!(debug_assertions) || INTERACTIVE {
    with_wrapper!()
  } else {
    with_wrapper!(std::io::BufWriter::new)
  }
}

fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
  R: BufRead,
  W: Write,
{
  let mut _scanner = lib::io::Scanner::new(reader);
  #[allow(unused_macros)]
  macro_rules! scan {
    ($T:ty) => {
      _scanner.parse_next::<$T>()?.unwrap()
    };
    ($($T:ty),+) => {
      ($(scan!($T)),+)
    };
    ($T:ty; $n:expr) => {
      _scanner.parse_next_n::<$T>($n)?.unwrap()
    };
    ($($T:ty),+; $n:expr) => {
      iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
        .take($n)
        .collect::<std::io::Result<Vec<_>>>()?
    };
  }
  #[allow(unused_macros)]
  macro_rules! scan_bytes_map {
    ($f:expr) => {
      _scanner.map_next_bytes($f)?
    };
    ($f:expr; $n:expr) => {
      _scanner.map_next_bytes_n($n, $f)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! print {
    ($($arg:tt)*) => {
      write!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! println {
    ($($arg:tt)*) => {
      writeln!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! answer {
    ($($arg:tt)*) => {{
      println!($($arg)*);
      return Ok(());
    }};
  }
  {
    use automaton_dp::*;

    const MOD: u64 = 998244353;

    #[derive(Clone, Copy)]
    struct ModSum(u64);

    impl Monoid for ModSum {
      fn op(&self, rhs: &Self) -> Self {
        let mut sum = self.0 + rhs.0;
        if sum >= MOD {
          sum -= MOD;
        }
        ModSum(sum)
      }
      fn identity() -> Self {
        ModSum(0)
      }
    }

    #[derive(Clone)]
    struct GoodXor(RangeInclusive<u32>);

    impl Dfa for GoodXor {
      type Char = u32;
      type State = u32;

      fn initial_state(&self) -> Option<u32> {
        Some(0)
      }
      fn next_state(&self, s: &u32, c: &u32) -> Option<u32> {
        Some(s ^ c)
      }
      fn is_accept_state(&self, s: &u32) -> bool {
        self.0.contains(s)
      }
    }

    #[derive(Clone)]
    struct LocallyDistinct;

    impl Dfa for LocallyDistinct {
      type Char = u32;
      type State = Option<u32>;

      fn initial_state(&self) -> Option<Option<u32>> {
        Some(None)
      }
      fn next_state(&self, s: &Option<u32>, c: &u32) -> Option<Option<u32>> {
        if *s != Some(*c) {
          Some(Some(*c))
        } else {
          None
        }
      }
      fn is_accept_state(&self, _: &Option<u32>) -> bool {
        true
      }
    }

    let (n, k, x, y) = scan!(usize, usize, u32, u32);
    let a = scan!(u32; k);

    let dfa = And(GoodXor(x..=y), LocallyDistinct);
    let ans = automaton_dp(dfa, a.iter().copied(), n, |x, _| *x, ModSum(1));
    println!("{}", ans.0);
  }
  #[allow(unreachable_code)]
  Ok(())
}
0