結果

問題 No.1304 あなたは基本が何か知っていますか?私は知っています.
ユーザー koba-e964koba-e964
提出日時 2020-12-01 22:53:01
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 7,476 bytes
コンパイル時間 13,136 ms
コンパイル使用メモリ 399,212 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-12 12:04:56
合計ジャッジ時間 16,029 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 1 ms
6,812 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 1 ms
6,940 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 AC 1 ms
6,940 KB
testcase_07 AC 1 ms
6,940 KB
testcase_08 AC 1 ms
6,940 KB
testcase_09 AC 1 ms
6,940 KB
testcase_10 AC 1 ms
6,940 KB
testcase_11 AC 1 ms
6,940 KB
testcase_12 AC 1 ms
6,944 KB
testcase_13 AC 1 ms
6,944 KB
testcase_14 AC 1 ms
6,940 KB
testcase_15 AC 1 ms
6,940 KB
testcase_16 AC 1 ms
6,940 KB
testcase_17 AC 1 ms
6,940 KB
testcase_18 AC 1 ms
6,944 KB
testcase_19 AC 1 ms
6,940 KB
testcase_20 AC 1 ms
6,944 KB
testcase_21 AC 1 ms
6,940 KB
testcase_22 AC 1 ms
6,940 KB
testcase_23 AC 1 ms
6,940 KB
testcase_24 AC 1 ms
6,944 KB
testcase_25 AC 1 ms
6,940 KB
testcase_26 AC 1 ms
6,944 KB
testcase_27 AC 1 ms
6,940 KB
testcase_28 AC 1 ms
6,940 KB
testcase_29 AC 1 ms
6,940 KB
testcase_30 AC 1 ms
6,940 KB
testcase_31 AC 1 ms
6,940 KB
testcase_32 AC 1 ms
6,940 KB
testcase_33 AC 1 ms
6,940 KB
testcase_34 AC 1 ms
6,940 KB
testcase_35 AC 1 ms
6,940 KB
testcase_36 AC 1 ms
6,944 KB
testcase_37 AC 1 ms
6,940 KB
testcase_38 AC 1 ms
6,940 KB
testcase_39 AC 1 ms
6,940 KB
testcase_40 AC 1 ms
6,944 KB
testcase_41 AC 2 ms
6,940 KB
testcase_42 AC 1 ms
6,940 KB
testcase_43 AC 1 ms
6,944 KB
testcase_44 AC 1 ms
6,940 KB
04_evil_A_01 RE -
04_evil_A_02 RE -
04_evil_A_03 RE -
04_evil_A_04 RE -
04_evil_A_05 RE -
04_evil_A_06 RE -
04_evil_A_07 RE -
04_evil_A_08 RE -
04_evil_A_09 RE -
04_evil_A_10 RE -
05_evil_B_01 RE -
05_evil_B_02 RE -
05_evil_B_03 RE -
05_evil_B_04 RE -
05_evil_B_05 RE -
05_evil_B_06 RE -
05_evil_B_07 RE -
05_evil_B_08 RE -
05_evil_B_09 RE -
05_evil_B_10 RE -
06_evil_C_01 RE -
06_evil_C_02 RE -
06_evil_C_03 RE -
06_evil_C_04 RE -
06_evil_C_05 RE -
06_evil_C_06 RE -
06_evil_C_07 RE -
06_evil_C_08 RE -
06_evil_C_09 RE -
06_evil_C_10 AC 1 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    ($($r:tt)*) => {
        let stdin = std::io::stdin();
        let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
        let mut next = move || -> String{
            bytes.by_ref().map(|r|r.unwrap() as char)
                .skip_while(|c|c.is_whitespace())
                .take_while(|c|!c.is_whitespace())
                .collect()
        };
        input_inner!{next, $($r)*}
    };
}

macro_rules! input_inner {
    ($next:expr) => {};
    ($next:expr, ) => {};
    ($next:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($next, $t);
        input_inner!{$next $($r)*}
    };
}

macro_rules! read_value {
    ($next:expr, [graph1; $len:expr]) => {{
        let mut g = vec![vec![]; $len];
        let ab = read_value!($next, [(usize1, usize1)]);
        for (a, b) in ab {
            g[a].push(b);
            g[b].push(a);
        }
        g
    }};
    ($next:expr, ( $($t:tt),* )) => {
        ( $(read_value!($next, $t)),* )
    };
    ($next:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    };
    ($next:expr, chars) => {
        read_value!($next, String).chars().collect::<Vec<char>>()
    };
    ($next:expr, usize1) => (read_value!($next, usize) - 1);
    ($next:expr, [ $t:tt ]) => {{
        let len = read_value!($next, usize);
        read_value!($next, [$t; len])
    }};
    ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}

#[allow(unused)]
macro_rules! debug {
    ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
    ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}

/// Verified by https://atcoder.jp/contests/arc093/submissions/3968098
mod mod_int {
    use std::ops::*;
    pub trait Mod: Copy { fn m() -> i64; }
    #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
    pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
    impl<M: Mod> ModInt<M> {
        // x >= 0
        pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
        fn new_internal(x: i64) -> Self {
            ModInt { x: x, phantom: ::std::marker::PhantomData }
        }
        pub fn pow(self, mut e: i64) -> Self {
            debug_assert!(e >= 0);
            let mut sum = ModInt::new_internal(1);
            let mut cur = self;
            while e > 0 {
                if e % 2 != 0 { sum *= cur; }
                cur *= cur;
                e /= 2;
            }
            sum
        }
        #[allow(dead_code)]
        pub fn inv(self) -> Self { self.pow(M::m() - 2) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
        type Output = Self;
        fn add(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x + other.x;
            if sum >= M::m() { sum -= M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
        type Output = Self;
        fn sub(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x - other.x;
            if sum < 0 { sum += M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
        type Output = Self;
        fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
        fn add_assign(&mut self, other: T) { *self = *self + other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
        fn sub_assign(&mut self, other: T) { *self = *self - other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
        fn mul_assign(&mut self, other: T) { *self = *self * other; }
    }
    impl<M: Mod> Neg for ModInt<M> {
        type Output = Self;
        fn neg(self) -> Self { ModInt::new(0) - self }
    }
    impl<M> ::std::fmt::Display for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            self.x.fmt(f)
        }
    }
    impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            let (mut a, mut b, _) = red(self.x, M::m());
            if b < 0 {
                a = -a;
                b = -b;
            }
            write!(f, "{}/{}", a, b)
        }
    }
    impl<M: Mod> From<i64> for ModInt<M> {
        fn from(x: i64) -> Self { Self::new(x) }
    }
    // Finds the simplest fraction x/y congruent to r mod p.
    // The return value (x, y, z) satisfies x = y * r + z * p.
    fn red(r: i64, p: i64) -> (i64, i64, i64) {
        if r.abs() <= 10000 {
            return (r, 1, 0);
        }
        let mut nxt_r = p % r;
        let mut q = p / r;
        if 2 * nxt_r >= r {
            nxt_r -= r;
            q += 1;
        }
        if 2 * nxt_r <= -r {
            nxt_r += r;
            q -= 1;
        }
        let (x, z, y) = red(nxt_r, r);
        (x, y - q * z, z)
    }
} // mod mod_int

macro_rules! define_mod {
    ($struct_name: ident, $modulo: expr) => {
        #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
        struct $struct_name {}
        impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
    }
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;

// O(NM + M log M + K log K)-time solution a la editorial
fn main() {
    let out = std::io::stdout();
    let mut out = BufWriter::new(out.lock());
    macro_rules! puts {
        ($($format:tt)*) => (let _ = write!(out,$($format)*););
    }
    input! {
        n: usize, k: usize, x: usize, y: usize,
        a: [usize; k],
    }
    let mut a = a;
    a.sort(); a.dedup();
    let k = a.len();
    const W: usize = 1024;
    let mut dp = vec![vec![MInt::new(0); W]; n + 1];
    for i in 0..W {
        dp[0][i] += 1;
    }
    let inv2 = MInt::new(2).inv();
    let mut had = vec![MInt::new(0); W];
    for i in 0..k {
        had[a[i]] += 1;
    }
    for i in 0..10 {
        for j in 0..W {
            if (j & 1 << i) == 0 {
                let x = had[j];
                let y = had[j | 1 << i];
                had[j] = x + y;
                had[j | 1 << i] = x - y;
            }
        }
    }
    // From now on the values of dp are Hadamard-transformed, until every transition ends.
    for i in 1..n + 1 {
        for u in 0..W {
            let val = dp[i - 1][u];
            dp[i][u] += val;
        }
        for j in 0..W {
            dp[i][j] *= had[j];
        }
        if i >= 2 {
            for j in 0..W {
                dp[i][j] = dp[i][j] - dp[i - 2][j] * (k as i64 - if i == 2 { 0 } else { 1 });
            }
        }
    }
    for j in 0..10 {
        for u in 0..W {
            if (u & 1 << j) == 0 {
                let x = dp[n][u];
                let y = dp[n][u | 1 << j];
                dp[n][u] = (x + y) * inv2;
                dp[n][u | 1 << j] = (x - y) * inv2;
            }
        }
    }
    let mut tot = MInt::new(0);
    for i in x..min(y, W - 1) + 1 {
        tot += dp[n][i];
    }
    puts!("{}\n", tot);
}
0