結果
問題 | No.1253 雀見椪 |
ユーザー | rokahikou1 |
提出日時 | 2020-12-03 00:36:23 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 50 ms / 2,000 ms |
コード長 | 3,665 bytes |
コンパイル時間 | 1,762 ms |
コンパイル使用メモリ | 174,720 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-13 10:56:08 |
合計ジャッジ時間 | 3,641 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 6 ms
6,940 KB |
testcase_04 | AC | 49 ms
6,944 KB |
testcase_05 | AC | 50 ms
6,940 KB |
testcase_06 | AC | 49 ms
6,940 KB |
testcase_07 | AC | 49 ms
6,940 KB |
testcase_08 | AC | 50 ms
6,940 KB |
testcase_09 | AC | 49 ms
6,940 KB |
testcase_10 | AC | 49 ms
6,944 KB |
testcase_11 | AC | 49 ms
6,940 KB |
testcase_12 | AC | 49 ms
6,944 KB |
testcase_13 | AC | 49 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,944 KB |
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:125:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions] 125 | auto [N, ag, bg, ac, bc, ap, bp] = reads<ll, ll, ll, ll, ll, ll, ll>(); | ^
ソースコード
#include <bits/stdc++.h> #define rep(i, n) for(int(i) = 0; (i) < (n); (i)++) #define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++) #define ALL(v) (v).begin(), (v).end() #define LLA(v) (v).rbegin(), (v).rend() #define PB push_back #define MP(a, b) make_pair((a), (b)) using namespace std; template <class T> inline vector<T> make_vec(size_t a, T val) { return vector<T>(a, val); } template <class... Ts> inline auto make_vec(size_t a, Ts... ts) { return vector<decltype(make_vec(ts...))>(a, make_vec(ts...)); } template <typename T> inline T read() { T t; cin >> t; return t; } template <typename T> inline vector<T> readv(size_t sz) { vector<T> ret(sz); rep(i, sz) cin >> ret[i]; return ret; } template <typename... Ts> inline tuple<Ts...> reads() { return {read<Ts>()...}; } template <typename T> struct edge { int to; T cost; edge(int t, T c) : to(t), cost(c) {} }; using ll = long long; using pii = pair<int, int>; using pll = pair<ll, ll>; using Graph = vector<vector<int>>; template <typename T> using WGraph = vector<vector<edge<T>>>; const int INF = 1 << 30; const ll LINF = 1LL << 60; const int MOD = 1e9 + 7; template <uint_fast64_t MOD> class ModInt { using u64 = uint_fast64_t; public: u64 val; ModInt(const u64 x = 0) : val((x + MOD) % MOD) {} constexpr u64 &value() { return val; } constexpr ModInt operator-() { return val ? MOD - val : 0; } constexpr ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; } constexpr ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; } constexpr ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; } constexpr ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; } constexpr ModInt &operator+=(const ModInt &rhs) { val += rhs.val; if(val >= MOD) { val -= MOD; } return *this; } constexpr ModInt &operator-=(const ModInt &rhs) { if(val < rhs.val) { val += MOD; } val -= rhs.val; return *this; } constexpr ModInt &operator*=(const ModInt &rhs) { val = val * rhs.val % MOD; return *this; } constexpr ModInt &operator/=(const ModInt &rhs) { *this *= rhs.inv(); return *this; } constexpr bool operator==(const ModInt &rhs) { return this->val == rhs.val; } constexpr bool operator!=(const ModInt &rhs) { return this->val != rhs.val; } friend constexpr ostream &operator<<(ostream &os, const ModInt<MOD> &x) { return os << x.val; } friend constexpr istream &operator>>(istream &is, ModInt<MOD> &x) { return is >> x.val; } constexpr ModInt inv() const { return ModInt(*this).pow(MOD - 2); } constexpr ModInt pow(ll e) const { u64 x = 1, p = val; while(e > 0) { if(e % 2 == 0) { p = (p * p) % MOD; e /= 2; } else { x = (x * p) % MOD; e--; } } return ModInt(x); } }; using mint = ModInt<MOD>; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T; while(T--) { auto [N, ag, bg, ac, bc, ap, bp] = reads<ll, ll, ll, ll, ll, ll, ll>(); mint g = mint(ag) / bg, c = mint(ac) / bc, p = mint(ap) / bp; mint win = (g + c).pow(N) + (c + p).pow(N) + (p + g).pow(N) - (g.pow(N) * 2) - (c.pow(N) * 2) - (p.pow(N) * 2); cout << mint(1) - win << endl; } }