結果
問題 | No.1307 Rotate and Accumulate |
ユーザー | takytank |
提出日時 | 2020-12-04 01:19:55 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 1,132 ms / 5,000 ms |
コード長 | 58,829 bytes |
コンパイル時間 | 3,451 ms |
コンパイル使用メモリ | 124,160 KB |
実行使用メモリ | 36,864 KB |
最終ジャッジ日時 | 2024-09-14 11:24:37 |
合計ジャッジ時間 | 16,018 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 38 ms
18,176 KB |
testcase_01 | AC | 38 ms
18,176 KB |
testcase_02 | AC | 38 ms
18,176 KB |
testcase_03 | AC | 39 ms
18,176 KB |
testcase_04 | AC | 39 ms
18,304 KB |
testcase_05 | AC | 39 ms
18,176 KB |
testcase_06 | AC | 38 ms
18,176 KB |
testcase_07 | AC | 38 ms
18,176 KB |
testcase_08 | AC | 1,096 ms
34,304 KB |
testcase_09 | AC | 1,101 ms
34,944 KB |
testcase_10 | AC | 560 ms
28,032 KB |
testcase_11 | AC | 566 ms
30,848 KB |
testcase_12 | AC | 561 ms
28,416 KB |
testcase_13 | AC | 99 ms
18,560 KB |
testcase_14 | AC | 288 ms
22,528 KB |
testcase_15 | AC | 1,132 ms
36,864 KB |
testcase_16 | AC | 1,130 ms
36,736 KB |
testcase_17 | AC | 1,132 ms
36,736 KB |
testcase_18 | AC | 914 ms
36,480 KB |
testcase_19 | AC | 977 ms
36,608 KB |
testcase_20 | AC | 926 ms
36,736 KB |
testcase_21 | AC | 38 ms
17,920 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Diagnostics.CodeAnalysis; using System.Globalization; using System.IO; using System.Linq; using System.Numerics; using System.Reflection.Metadata; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Text; using System.Threading; namespace YukiCoder { public class Program { static void Main() { using var cin = new Scanner(); var (n, q) = cin.Int2(); var a = cin.ArrayLong(n); var b = new long[n + 2]; for (int i = 0; i < q; i++) { int r = cin.Int(); b[(n - r) % n]++; } var conv = Math.ConvolutionLong(a, b); var ret = new long[n]; for (int i = 0; i < n; i++) { ret[i] += conv[i]; ret[i] += conv[i + n]; } Console.WriteLine(ret.Join(" ")); } } public static partial class Math { /// <summary> /// 畳み込みを mod <paramref name="m"/> = 998244353 で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<paramref name="m"/>≤2×10^9</para> /// <para>- <paramref name="m"/> は素数</para> /// <para>- 2^c | (<paramref name="m"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<paramref name="m"/>)</para> /// </remarks> public static int[] Convolution(int[] a, int[] b) => Convolution<Mod998244353>(a, b); /// <summary> /// 畳み込みを mod <paramref name="m"/> = 998244353 で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<paramref name="m"/>≤2×10^9</para> /// <para>- <paramref name="m"/> は素数</para> /// <para>- 2^c | (<paramref name="m"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<paramref name="m"/>)</para> /// </remarks> public static uint[] Convolution(uint[] a, uint[] b) => Convolution<Mod998244353>(a, b); /// <summary> /// 畳み込みを mod <paramref name="m"/> = 998244353 で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<paramref name="m"/>≤2×10^9</para> /// <para>- <paramref name="m"/> は素数</para> /// <para>- 2^c | (<paramref name="m"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<paramref name="m"/>)</para> /// </remarks> public static long[] Convolution(long[] a, long[] b) => Convolution<Mod998244353>(a, b); /// <summary> /// 畳み込みを mod <paramref name="m"/> = 998244353 で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<paramref name="m"/>≤2×10^9</para> /// <para>- <paramref name="m"/> は素数</para> /// <para>- 2^c | (<paramref name="m"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<paramref name="m"/>)</para> /// </remarks> public static ulong[] Convolution(ulong[] a, ulong[] b) => Convolution<Mod998244353>(a, b); /// <summary> /// 畳み込みを mod <typeparamref name="TMod"/> で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<typeparamref name="TMod"/>≤2×10^9</para> /// <para>- <typeparamref name="TMod"/> は素数</para> /// <para>- 2^c | (<typeparamref name="TMod"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<typeparamref name="TMod"/>)</para> /// </remarks> public static int[] Convolution<TMod>(int[] a, int[] b) where TMod : struct, IStaticMod { var n = a.Length; var m = b.Length; if (n == 0 || m == 0) { return Array.Empty<int>(); } if (System.Math.Min(n, m) <= 60) { var c = ConvolutionNaive<TMod>(a.Select(ai => new StaticModInt<TMod>(ai)).ToArray(), b.Select(bi => new StaticModInt<TMod>(bi)).ToArray()); return c.Select(ci => ci.Value).ToArray(); } else { int z = 1 << InternalMath.CeilPow2(n + m - 1); var aTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < a.Length; i++) { aTemp[i] = new StaticModInt<TMod>(a[i]); } var bTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < b.Length; i++) { bTemp[i] = new StaticModInt<TMod>(b[i]); } var c = Convolution<TMod>(aTemp, bTemp, n, m, z)[0..(n + m - 1)]; var result = new int[c.Length]; for (int i = 0; i < result.Length; i++) { result[i] = c[i].Value; } return result; } } /// <summary> /// 畳み込みを mod <typeparamref name="TMod"/> で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<typeparamref name="TMod"/>≤2×10^9</para> /// <para>- <typeparamref name="TMod"/> は素数</para> /// <para>- 2^c | (<typeparamref name="TMod"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<typeparamref name="TMod"/>)</para> /// </remarks> public static uint[] Convolution<TMod>(uint[] a, uint[] b) where TMod : struct, IStaticMod { var n = a.Length; var m = b.Length; if (n == 0 || m == 0) { return Array.Empty<uint>(); } if (System.Math.Min(n, m) <= 60) { var c = ConvolutionNaive<TMod>(a.Select(ai => new StaticModInt<TMod>(ai)).ToArray(), b.Select(bi => new StaticModInt<TMod>(bi)).ToArray()); return c.Select(ci => (uint)ci.Value).ToArray(); } else { int z = 1 << InternalMath.CeilPow2(n + m - 1); var aTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < a.Length; i++) { aTemp[i] = new StaticModInt<TMod>(a[i]); } var bTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < b.Length; i++) { bTemp[i] = new StaticModInt<TMod>(b[i]); } var c = Convolution<TMod>(aTemp, bTemp, n, m, z)[0..(n + m - 1)]; var result = new uint[c.Length]; for (int i = 0; i < result.Length; i++) { result[i] = (uint)c[i].Value; } return result; } } /// <summary> /// 畳み込みを mod <typeparamref name="TMod"/> で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<typeparamref name="TMod"/>≤2×10^9</para> /// <para>- <typeparamref name="TMod"/> は素数</para> /// <para>- 2^c | (<typeparamref name="TMod"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<typeparamref name="TMod"/>)</para> /// </remarks> public static long[] Convolution<TMod>(long[] a, long[] b) where TMod : struct, IStaticMod { var n = a.Length; var m = b.Length; if (n == 0 || m == 0) { return Array.Empty<long>(); } if (System.Math.Min(n, m) <= 60) { var c = ConvolutionNaive<TMod>(a.Select(ai => new StaticModInt<TMod>(ai)).ToArray(), b.Select(bi => new StaticModInt<TMod>(bi)).ToArray()); return c.Select(ci => (long)ci.Value).ToArray(); } else { int z = 1 << InternalMath.CeilPow2(n + m - 1); var aTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < a.Length; i++) { aTemp[i] = new StaticModInt<TMod>(a[i]); } var bTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < b.Length; i++) { bTemp[i] = new StaticModInt<TMod>(b[i]); } var c = Convolution<TMod>(aTemp, bTemp, n, m, z)[0..(n + m - 1)]; var result = new long[c.Length]; for (int i = 0; i < result.Length; i++) { result[i] = c[i].Value; } return result; } } /// <summary> /// 畳み込みを mod <typeparamref name="TMod"/> で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<typeparamref name="TMod"/>≤2×10^9</para> /// <para>- <typeparamref name="TMod"/> は素数</para> /// <para>- 2^c | (<typeparamref name="TMod"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<typeparamref name="TMod"/>)</para> /// </remarks> public static ulong[] Convolution<TMod>(ulong[] a, ulong[] b) where TMod : struct, IStaticMod { var n = a.Length; var m = b.Length; if (n == 0 || m == 0) { return Array.Empty<ulong>(); } if (System.Math.Min(n, m) <= 60) { var c = ConvolutionNaive<TMod>(a.Select(TakeMod).ToArray(), b.Select(TakeMod).ToArray()); return c.Select(ci => (ulong)ci.Value).ToArray(); } else { int z = 1 << InternalMath.CeilPow2(n + m - 1); var aTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < a.Length; i++) { aTemp[i] = TakeMod(a[i]); } var bTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < b.Length; i++) { bTemp[i] = TakeMod(b[i]); } var c = Convolution<TMod>(aTemp, bTemp, n, m, z)[0..(n + m - 1)]; var result = new ulong[c.Length]; for (int i = 0; i < result.Length; i++) { result[i] = (ulong)c[i].Value; } return result; } StaticModInt<TMod> TakeMod(ulong x) => StaticModInt<TMod>.Raw((int)(x % default(TMod).Mod)); } /// <summary> /// 畳み込みを mod <typeparamref name="TMod"/> で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<typeparamref name="TMod"/>≤2×10^9</para> /// <para>- <typeparamref name="TMod"/> は素数</para> /// <para>- 2^c | (<typeparamref name="TMod"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<typeparamref name="TMod"/>)</para> /// </remarks> public static StaticModInt<TMod>[] Convolution<TMod>(StaticModInt<TMod>[] a, StaticModInt<TMod>[] b) where TMod : struct, IStaticMod { var temp = Convolution((ReadOnlySpan<StaticModInt<TMod>>)a, b); return temp.ToArray(); } /// <summary> /// 畳み込みを mod <typeparamref name="TMod"/> で計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- 2≤<typeparamref name="TMod"/>≤2×10^9</para> /// <para>- <typeparamref name="TMod"/> は素数</para> /// <para>- 2^c | (<typeparamref name="TMod"/> - 1) かつ |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^c なる c が存在する</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|) + log<typeparamref name="TMod"/>)</para> /// </remarks> public static Span<StaticModInt<TMod>> Convolution<TMod>(ReadOnlySpan<StaticModInt<TMod>> a, ReadOnlySpan<StaticModInt<TMod>> b) where TMod : struct, IStaticMod { var n = a.Length; var m = b.Length; if (n == 0 || m == 0) { return Array.Empty<StaticModInt<TMod>>(); } if (System.Math.Min(n, m) <= 60) { return ConvolutionNaive(a, b); } int z = 1 << InternalMath.CeilPow2(n + m - 1); var aTemp = new StaticModInt<TMod>[z]; a.CopyTo(aTemp); var bTemp = new StaticModInt<TMod>[z]; b.CopyTo(bTemp); return Convolution(aTemp.AsSpan(), bTemp.AsSpan(), n, m, z); } private static Span<StaticModInt<TMod>> Convolution<TMod>(Span<StaticModInt<TMod>> a, Span<StaticModInt<TMod>> b, int n, int m, int z) where TMod : struct, IStaticMod { Butterfly<TMod>.Calculate(a); Butterfly<TMod>.Calculate(b); for (int i = 0; i < a.Length; i++) { a[i] *= b[i]; } Butterfly<TMod>.CalculateInv(a); var result = a[0..(n + m - 1)]; var iz = new StaticModInt<TMod>(z).Inv(); foreach (ref var r in result) { r *= iz; } return result; } /// <summary> /// 畳み込みを計算します。 /// </summary> /// <remarks> /// <para><paramref name="a"/>, <paramref name="b"/> の少なくとも一方が空の場合は空配列を返します。</para> /// <para>制約:</para> /// <para>- |<paramref name="a"/>| + |<paramref name="b"/>| - 1 ≤ 2^24 = 16,777,216</para> /// <para>- 畳み込んだ後の配列の要素が全て long に収まる</para> /// <para>計算量: O((|<paramref name="a"/>|+|<paramref name="b"/>|)log(|<paramref name="a"/>|+|<paramref name="b"/>|))</para> /// </remarks> public static long[] ConvolutionLong(ReadOnlySpan<long> a, ReadOnlySpan<long> b) { unchecked { var n = a.Length; var m = b.Length; if (n == 0 || m == 0) { return Array.Empty<long>(); } const ulong Mod1 = 754974721; const ulong Mod2 = 167772161; const ulong Mod3 = 469762049; const ulong M2M3 = Mod2 * Mod3; const ulong M1M3 = Mod1 * Mod3; const ulong M1M2 = Mod1 * Mod2; // (m1 * m2 * m3) % 2^64 const ulong M1M2M3 = Mod1 * Mod2 * Mod3; ulong i1 = (ulong)InternalMath.InvGCD((long)M2M3, (long)Mod1).Item2; ulong i2 = (ulong)InternalMath.InvGCD((long)M1M3, (long)Mod2).Item2; ulong i3 = (ulong)InternalMath.InvGCD((long)M1M2, (long)Mod3).Item2; var c1 = Convolution<FFTMod1>(a, b); var c2 = Convolution<FFTMod2>(a, b); var c3 = Convolution<FFTMod3>(a, b); var c = new long[n + m - 1]; Span<ulong> offset = stackalloc ulong[] { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3 }; for (int i = 0; i < c.Length; i++) { ulong x = 0; x += (c1[i] * i1) % Mod1 * M2M3; x += (c2[i] * i2) % Mod2 * M1M3; x += (c3[i] * i3) % Mod3 * M1M2; long diff = (long)c1[i] - InternalMath.SafeMod((long)x, (long)Mod1); if (diff < 0) { diff += (long)Mod1; } // 真値を r, 得られた値を x, M1M2M3 % 2^64 = M', B = 2^63 として、 // r = x, // x - M' + (0 or 2B), // x - 2M' + (0 or 2B or 4B), // x - 3M' + (0 or 2B or 4B or 6B) // のいずれかが成り立つ、らしい // -> see atcoder/convolution.hpp x -= offset[(int)(diff % offset.Length)]; c[i] = (long)x; } return c; } ulong[] Convolution<TMod>(ReadOnlySpan<long> a, ReadOnlySpan<long> b) where TMod : struct, IStaticMod { int z = 1 << InternalMath.CeilPow2(a.Length + b.Length - 1); var aTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < a.Length; i++) { aTemp[i] = new StaticModInt<TMod>(a[i]); } var bTemp = new StaticModInt<TMod>[z]; for (int i = 0; i < b.Length; i++) { bTemp[i] = new StaticModInt<TMod>(b[i]); } var c = YukiCoder.Math.Convolution<TMod>(aTemp, bTemp, a.Length, b.Length, z); var result = new ulong[c.Length]; for (int i = 0; i < result.Length; i++) { result[i] = (ulong)c[i].Value; } return result; } } private static StaticModInt<TMod>[] ConvolutionNaive<TMod>(ReadOnlySpan<StaticModInt<TMod>> a, ReadOnlySpan<StaticModInt<TMod>> b) where TMod : struct, IStaticMod { if (a.Length < b.Length) { // ref 構造体のため型引数として使えない var temp = a; a = b; b = temp; } var ans = new StaticModInt<TMod>[a.Length + b.Length - 1]; for (int i = 0; i < a.Length; i++) { for (int j = 0; j < b.Length; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } private readonly struct FFTMod1 : IStaticMod { public uint Mod => 754974721; public bool IsPrime => true; } private readonly struct FFTMod2 : IStaticMod { public uint Mod => 167772161; public bool IsPrime => true; } private readonly struct FFTMod3 : IStaticMod { public uint Mod => 469762049; public bool IsPrime => true; } } /// <summary> /// コンパイル時に決定する mod を表します。 /// </summary> /// <example> /// <code> /// public readonly struct Mod1000000009 : IStaticMod /// { /// public uint Mod => 1000000009; /// public bool IsPrime => true; /// } /// </code> /// </example> public interface IStaticMod { /// <summary> /// mod を取得します。 /// </summary> uint Mod { get; } /// <summary> /// mod が素数であるか識別します。 /// </summary> bool IsPrime { get; } } public readonly struct Mod1000000007 : IStaticMod { public uint Mod => 1000000007; public bool IsPrime => true; } public readonly struct Mod998244353 : IStaticMod { public uint Mod => 998244353; public bool IsPrime => true; } /// <summary> /// 実行時に決定する mod の ID を表します。 /// </summary> /// <example> /// <code> /// public readonly struct ModID123 : IDynamicModID { } /// </code> /// </example> public interface IDynamicModID { } public readonly struct ModID0 : IDynamicModID { } public readonly struct ModID1 : IDynamicModID { } public readonly struct ModID2 : IDynamicModID { } /// <summary> /// 四則演算時に自動で mod を取る整数型。mod の値はコンパイル時に決定している必要があります。 /// </summary> /// <typeparam name="T">定数 mod を表す構造体</typeparam> /// <example> /// <code> /// using ModInt = AtCoder.StaticModInt<AtCoder.Mod1000000007>; /// /// void SomeMethod() /// { /// var m = new ModInt(1); /// m -= 2; /// Console.WriteLine(m); // 1000000006 /// } /// </code> /// </example> public readonly struct StaticModInt<T> where T : struct, IStaticMod { private readonly uint _v; /// <summary> /// 格納されている値を返します。 /// </summary> public int Value => (int)_v; /// <summary> /// mod を返します。 /// </summary> public static int Mod => (int)default(T).Mod; /// <summary> /// <paramref name="v"/> に対して mod を取らずに StaticModInt<<typeparamref name="T"/>> 型のインスタンスを生成します。 /// </summary> /// <remarks> /// <para>定数倍高速化のための関数です。 <paramref name="v"/> に 0 未満または mod 以上の値を入れた場合の挙動は未定義です。</para> /// <para>制約: 0≤|<paramref name="v"/>|<mod</para> /// </remarks> public static StaticModInt<T> Raw(int v) { var u = unchecked((uint)v); Debug.Assert(u < Mod); return new StaticModInt<T>(u); } /// <summary> /// StaticModInt<<typeparamref name="T"/>> 型のインスタンスを生成します。 /// </summary> /// <remarks> /// <paramref name="v"/>が 0 未満、もしくは mod 以上の場合、自動で mod を取ります。 /// </remarks> public StaticModInt(long v) : this(Round(v)) { } private StaticModInt(uint v) => _v = v; private static uint Round(long v) { var x = v % default(T).Mod; if (x < 0) { x += default(T).Mod; } return (uint)x; } public static StaticModInt<T> operator ++(StaticModInt<T> value) { var v = value._v + 1; if (v == default(T).Mod) { v = 0; } return new StaticModInt<T>(v); } public static StaticModInt<T> operator --(StaticModInt<T> value) { var v = value._v; if (v == 0) { v = default(T).Mod; } return new StaticModInt<T>(v - 1); } public static StaticModInt<T> operator +(StaticModInt<T> lhs, StaticModInt<T> rhs) { var v = lhs._v + rhs._v; if (v >= default(T).Mod) { v -= default(T).Mod; } return new StaticModInt<T>(v); } public static StaticModInt<T> operator -(StaticModInt<T> lhs, StaticModInt<T> rhs) { unchecked { var v = lhs._v - rhs._v; if (v >= default(T).Mod) { v += default(T).Mod; } return new StaticModInt<T>(v); } } public static StaticModInt<T> operator *(StaticModInt<T> lhs, StaticModInt<T> rhs) { return new StaticModInt<T>((uint)((ulong)lhs._v * rhs._v % default(T).Mod)); } /// <summary> /// 除算を行います。 /// </summary> /// <remarks> /// <para>- 制約: <paramref name="rhs"/> に乗法の逆元が存在する。(gcd(<paramref name="rhs"/>, mod) = 1)</para> /// <para>- 計算量: O(log(mod))</para> /// </remarks> public static StaticModInt<T> operator /(StaticModInt<T> lhs, StaticModInt<T> rhs) => lhs * rhs.Inv(); public static StaticModInt<T> operator +(StaticModInt<T> value) => value; public static StaticModInt<T> operator -(StaticModInt<T> value) => new StaticModInt<T>() - value; public static bool operator ==(StaticModInt<T> lhs, StaticModInt<T> rhs) => lhs._v == rhs._v; public static bool operator !=(StaticModInt<T> lhs, StaticModInt<T> rhs) => lhs._v != rhs._v; public static implicit operator StaticModInt<T>(int value) => new StaticModInt<T>(value); public static implicit operator StaticModInt<T>(long value) => new StaticModInt<T>(value); /// <summary> /// 自身を x として、x^<paramref name="n"/> を返します。 /// </summary> /// <remarks> /// <para>制約: 0≤|<paramref name="n"/>|</para> /// <para>計算量: O(log(<paramref name="n"/>))</para> /// </remarks> public StaticModInt<T> Pow(long n) { Debug.Assert(0 <= n); var x = this; var r = new StaticModInt<T>(1u); while (n > 0) { if ((n & 1) > 0) { r *= x; } x *= x; n >>= 1; } return r; } /// <summary> /// 自身を x として、 xy≡1 なる y を返します。 /// </summary> /// <remarks> /// <para>制約: gcd(x, mod) = 1</para> /// </remarks> public StaticModInt<T> Inv() { if (default(T).IsPrime) { Debug.Assert(_v > 0); return Pow(default(T).Mod - 2); } else { var (g, x) = InternalMath.InvGCD(_v, default(T).Mod); Debug.Assert(g == 1); return new StaticModInt<T>(x); } } public override string ToString() => _v.ToString(); public override bool Equals(object obj) => obj is StaticModInt<T> && this == (StaticModInt<T>)obj; public override int GetHashCode() => _v.GetHashCode(); } /// <summary> /// 四則演算時に自動で mod を取る整数型。実行時に mod が決まる場合でも使用可能です。 /// </summary> /// <remarks> /// 使用前に DynamicModInt<<typeparamref name="T"/>>.Mod に mod の値を設定する必要があります。 /// </remarks> /// <typeparam name="T">mod の ID を表す構造体</typeparam> /// <example> /// <code> /// using AtCoder.ModInt = AtCoder.DynamicModInt<AtCoder.ModID0>; /// /// void SomeMethod() /// { /// ModInt.Mod = 1000000009; /// var m = new ModInt(1); /// m -= 2; /// Console.WriteLine(m); // 1000000008 /// } /// </code> /// </example> public readonly struct DynamicModInt<T> where T : struct, IDynamicModID { private readonly uint _v; private static Barrett bt; /// <summary> /// 格納されている値を返します。 /// </summary> public int Value => (int)_v; /// <summary> /// mod を返します。 /// </summary> public static int Mod { get => (int)bt.Mod; set { Debug.Assert(1 <= value); bt = new Barrett((uint)value); } } /// <summary> /// <paramref name="v"/> に対して mod を取らずに DynamicModInt<<typeparamref name="T"/>> 型のインスタンスを生成します。 /// </summary> /// <remarks> /// <para>定数倍高速化のための関数です。 <paramref name="v"/> に 0 未満または mod 以上の値を入れた場合の挙動は未定義です。</para> /// <para>制約: 0≤|<paramref name="v"/>|<mod</para> /// </remarks> public static DynamicModInt<T> Raw(int v) { var u = unchecked((uint)v); Debug.Assert(bt != null, $"使用前に {nameof(DynamicModInt<T>)}<{nameof(T)}>.{nameof(Mod)} プロパティに mod の値を設定してください。"); Debug.Assert(u < Mod); return new DynamicModInt<T>(u); } /// <summary> /// DynamicModInt<<typeparamref name="T"/>> 型のインスタンスを生成します。 /// </summary> /// <remarks> /// <para>- 使用前に DynamicModInt<<typeparamref name="T"/>>.Mod に mod の値を設定する必要があります。</para> /// <para>- <paramref name="v"/> が 0 未満、もしくは mod 以上の場合、自動で mod を取ります。</para> /// </remarks> public DynamicModInt(long v) : this(Round(v)) { } private DynamicModInt(uint v) => _v = v; private static uint Round(long v) { Debug.Assert(bt != null, $"使用前に {nameof(DynamicModInt<T>)}<{nameof(T)}>.{nameof(Mod)} プロパティに mod の値を設定してください。"); var x = v % bt.Mod; if (x < 0) { x += bt.Mod; } return (uint)x; } public static DynamicModInt<T> operator ++(DynamicModInt<T> value) { var v = value._v + 1; if (v == bt.Mod) { v = 0; } return new DynamicModInt<T>(v); } public static DynamicModInt<T> operator --(DynamicModInt<T> value) { var v = value._v; if (v == 0) { v = bt.Mod; } return new DynamicModInt<T>(v - 1); } public static DynamicModInt<T> operator +(DynamicModInt<T> lhs, DynamicModInt<T> rhs) { var v = lhs._v + rhs._v; if (v >= bt.Mod) { v -= bt.Mod; } return new DynamicModInt<T>(v); } public static DynamicModInt<T> operator -(DynamicModInt<T> lhs, DynamicModInt<T> rhs) { unchecked { var v = lhs._v - rhs._v; if (v >= bt.Mod) { v += bt.Mod; } return new DynamicModInt<T>(v); } } public static DynamicModInt<T> operator *(DynamicModInt<T> lhs, DynamicModInt<T> rhs) { uint z = bt.Mul(lhs._v, rhs._v); return new DynamicModInt<T>(z); } /// <summary> /// 除算を行います。 /// </summary> /// <remarks> /// <para>- 制約: <paramref name="rhs"/> に乗法の逆元が存在する。(gcd(<paramref name="rhs"/>, mod) = 1)</para> /// <para>- 計算量: O(log(mod))</para> /// </remarks> public static DynamicModInt<T> operator /(DynamicModInt<T> lhs, DynamicModInt<T> rhs) => lhs * rhs.Inv(); public static DynamicModInt<T> operator +(DynamicModInt<T> value) => value; public static DynamicModInt<T> operator -(DynamicModInt<T> value) => new DynamicModInt<T>() - value; public static bool operator ==(DynamicModInt<T> lhs, DynamicModInt<T> rhs) => lhs._v == rhs._v; public static bool operator !=(DynamicModInt<T> lhs, DynamicModInt<T> rhs) => lhs._v != rhs._v; public static implicit operator DynamicModInt<T>(int value) => new DynamicModInt<T>(value); public static implicit operator DynamicModInt<T>(long value) => new DynamicModInt<T>(value); /// <summary> /// 自身を x として、x^<paramref name="n"/> を返します。 /// </summary> /// <remarks> /// <para>制約: 0≤|<paramref name="n"/>|</para> /// <para>計算量: O(log(<paramref name="n"/>))</para> /// </remarks> public DynamicModInt<T> Pow(long n) { Debug.Assert(0 <= n); var x = this; var r = new DynamicModInt<T>(1u); while (n > 0) { if ((n & 1) > 0) { r *= x; } x *= x; n >>= 1; } return r; } /// <summary> /// 自身を x として、 xy≡1 なる y を返します。 /// </summary> /// <remarks> /// <para>制約: gcd(x, mod) = 1</para> /// </remarks> public DynamicModInt<T> Inv() { var (g, x) = InternalMath.InvGCD(_v, bt.Mod); Debug.Assert(g == 1); return new DynamicModInt<T>(x); } public override string ToString() => _v.ToString(); public override bool Equals(object obj) => obj is DynamicModInt<T> && this == (DynamicModInt<T>)obj; public override int GetHashCode() => _v.GetHashCode(); } public static partial class InternalMath { private static readonly Dictionary<int, int> primitiveRootsCache = new Dictionary<int, int>() { { 2, 1 }, { 167772161, 3 }, { 469762049, 3 }, { 754974721, 11 }, { 998244353, 3 } }; /// <summary> /// <paramref name="m"/> の最小の原始根を求めます。 /// </summary> /// <remarks> /// 制約: <paramref name="m"/> は素数 /// </remarks> public static int PrimitiveRoot(int m) { Debug.Assert(m >= 2); if (primitiveRootsCache.TryGetValue(m, out var p)) { return p; } return primitiveRootsCache[m] = Calculate(m); int Calculate(int m) { Span<int> divs = stackalloc int[20]; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) { x >>= 1; } for (int i = 3; (long)i * i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2; ; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (PowMod(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) { return g; } } } } /// <summary> /// <paramref name="x"/>^<paramref name="n"/> mod <paramref name="m"/> を返します。 /// </summary> /// <remarks> /// <para>制約: 0≤<paramref name="n"/>, 1≤<paramref name="m"/></para> /// <para>計算量: O(log<paramref name="n"/>)</para> /// </remarks> public static long PowMod(long x, long n, int m) { Debug.Assert(0 <= n && 1 <= m); if (m == 1) return 0; Barrett barrett = new Barrett((uint)m); uint r = 1, y = (uint)InternalMath.SafeMod(x, m); while (0 < n) { if ((n & 1) != 0) r = barrett.Mul(r, y); y = barrett.Mul(y, y); n >>= 1; } return r; } public static long SafeMod(long x, long m) { x %= m; if (x < 0) x += m; return x; } /// <summary> /// g=gcd(a,b),xa=g(mod b) となるような 0≤x<b/g の(g, x) /// </summary> /// <remarks> /// <para>制約: 1≤<paramref name="b"/></para> /// </remarks> public static (long, long) InvGCD(long a, long b) { a = SafeMod(a, b); if (a == 0) return (b, 0); long s = b, t = a; long m0 = 0, m1 = 1; long u; while (true) { if (t == 0) { if (m0 < 0) m0 += b / s; return (s, m0); } u = s / t; s -= t * u; m0 -= m1 * u; if (s == 0) { if (m1 < 0) m1 += b / t; return (t, m1); } u = t / s; t -= s * u; m1 -= m0 * u; } } /// <summary> /// <paramref name="n"/> ≤ 2**x を満たす最小のx /// </summary> /// <remarks> /// <para>制約: 0≤<paramref name="n"/></para> /// </remarks> public static int CeilPow2(int n) { var un = (uint)n; if (un <= 1) return 0; int ret = 0; int pow = 1; while (n > pow) { ++ret; pow *= 2; } return ret; } } /// <summary> /// Fast moduler by barrett reduction /// <seealso href="https://en.wikipedia.org/wiki/Barrett_reduction"/> /// </summary> public class Barrett { public uint Mod { get; private set; } private ulong IM; public Barrett(uint m) { Mod = m; IM = unchecked((ulong)-1) / m + 1; } /// <summary> /// <paramref name="a"/> * <paramref name="b"/> mod m /// </summary> public uint Mul(uint a, uint b) { ulong z = a; z *= b; return (uint)(z % Mod); } } public static class Butterfly<T> where T : struct, IStaticMod { /// <summary> /// sumE[i] = ies[0] * ... * ies[i - 1] * es[i] /// </summary> private static StaticModInt<T>[] sumE = CalcurateSumE(); /// <summary> /// sumIE[i] = es[0] * ... * es[i - 1] * ies[i] /// </summary> private static StaticModInt<T>[] sumIE = CalcurateSumIE(); public static void Calculate(Span<StaticModInt<T>> a) { var n = a.Length; var h = InternalMath.CeilPow2(n); for (int ph = 1; ph <= h; ph++) { // ブロックサイズの半分 int w = 1 << (ph - 1); // ブロック数 int p = 1 << (h - ph); var now = StaticModInt<T>.Raw(1); // 各ブロックの s 段目 for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { var l = a[i + offset]; var r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sumE[InternalBit.BSF(~(uint)s)]; } } } public static void CalculateInv(Span<StaticModInt<T>> a) { var n = a.Length; var h = InternalMath.CeilPow2(n); for (int ph = h; ph >= 1; ph--) { // ブロックサイズの半分 int w = 1 << (ph - 1); // ブロック数 int p = 1 << (h - ph); var iNow = StaticModInt<T>.Raw(1); // 各ブロックの s 段目 for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { var l = a[i + offset]; var r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = StaticModInt<T>.Raw( unchecked((int)((ulong)(default(T).Mod + l.Value - r.Value) * (ulong)iNow.Value % default(T).Mod))); } iNow *= sumIE[InternalBit.BSF(~(uint)s)]; } } } private static StaticModInt<T>[] CalcurateSumE() { int g = InternalMath.PrimitiveRoot((int)default(T).Mod); int cnt2 = InternalBit.BSF(default(T).Mod - 1); var e = new StaticModInt<T>(g).Pow((default(T).Mod - 1) >> cnt2); var ie = e.Inv(); var sumE = new StaticModInt<T>[cnt2 - 2]; // es[i]^(2^(2+i)) == 1 Span<StaticModInt<T>> es = stackalloc StaticModInt<T>[cnt2 - 1]; Span<StaticModInt<T>> ies = stackalloc StaticModInt<T>[cnt2 - 1]; for (int i = es.Length - 1; i >= 0; i--) { // e^(2^(2+i)) == 1 es[i] = e; ies[i] = ie; e *= e; ie *= ie; } var now = StaticModInt<T>.Raw(1); for (int i = 0; i < sumE.Length; i++) { sumE[i] = es[i] * now; now *= ies[i]; } return sumE; } private static StaticModInt<T>[] CalcurateSumIE() { int g = InternalMath.PrimitiveRoot((int)default(T).Mod); int cnt2 = InternalBit.BSF(default(T).Mod - 1); var e = new StaticModInt<T>(g).Pow((default(T).Mod - 1) >> cnt2); var ie = e.Inv(); var sumIE = new StaticModInt<T>[cnt2 - 2]; // es[i]^(2^(2+i)) == 1 Span<StaticModInt<T>> es = stackalloc StaticModInt<T>[cnt2 - 1]; Span<StaticModInt<T>> ies = stackalloc StaticModInt<T>[cnt2 - 1]; for (int i = es.Length - 1; i >= 0; i--) { // e^(2^(2+i)) == 1 es[i] = e; ies[i] = ie; e *= e; ie *= ie; } var now = StaticModInt<T>.Raw(1); for (int i = 0; i < sumIE.Length; i++) { sumIE[i] = ies[i] * now; now *= es[i]; } return sumIE; } } public static class InternalBit { /// <summary> /// _blsi_u32 OR <paramref name="n"/> & -<paramref name="n"/> /// <para><paramref name="n"/>で立っているうちの最下位の 1 ビットのみを立てた整数を返す</para> /// </summary> /// <param name="n"></param> /// <returns><paramref name="n"/> & -<paramref name="n"/></returns> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int ExtractLowestSetBit(int n) { return n & -n; } /// <summary> /// (<paramref name="n"/> & (1 << x)) != 0 なる最小の非負整数 x を求めます。 /// </summary> /// <remarks> /// <para>BSF: Bit Scan Forward</para> /// <para>制約: 1 ≤ <paramref name="n"/></para> /// </remarks> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int BSF(uint n) { for (int i = 0; i < 32; i++) { if (((1 << i) & n) != 0) { return i; } } return 32; } } public struct BitFlag { public static BitFlag Begin() => 0; public static BitFlag End(int bitCount) => 1 << bitCount; public static BitFlag FromBit(int bitNumber) => 1 << bitNumber; private readonly int flags_; public bool this[int bitNumber] => (flags_ & (1 << bitNumber)) != 0; public BitFlag(int flags) { flags_ = flags; } public bool Has(BitFlag target) => (flags_ & target.flags_) == target.flags_; public bool Has(int target) => (flags_ & target) == target; public bool HasBit(int bitNumber) => (flags_ & (1 << bitNumber)) != 0; public BitFlag OrBit(int bitNumber) => (flags_ | (1 << bitNumber)); public BitFlag AndBit(int bitNumber) => (flags_ & (1 << bitNumber)); public BitFlag XorBit(int bitNumber) => (flags_ ^ (1 << bitNumber)); public static BitFlag operator ++(BitFlag src) => new BitFlag(src.flags_ + 1); public static BitFlag operator --(BitFlag src) => new BitFlag(src.flags_ - 1); public static BitFlag operator |(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ | rhs.flags_); public static BitFlag operator |(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ | rhs); public static BitFlag operator |(int lhs, BitFlag rhs) => new BitFlag(lhs | rhs.flags_); public static BitFlag operator &(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ & rhs.flags_); public static BitFlag operator &(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ & rhs); public static BitFlag operator &(int lhs, BitFlag rhs) => new BitFlag(lhs & rhs.flags_); public static bool operator <(BitFlag lhs, BitFlag rhs) => lhs.flags_ < rhs.flags_; public static bool operator <(BitFlag lhs, int rhs) => lhs.flags_ < rhs; public static bool operator <(int lhs, BitFlag rhs) => lhs < rhs.flags_; public static bool operator >(BitFlag lhs, BitFlag rhs) => lhs.flags_ > rhs.flags_; public static bool operator >(BitFlag lhs, int rhs) => lhs.flags_ > rhs; public static bool operator >(int lhs, BitFlag rhs) => lhs > rhs.flags_; public static bool operator <=(BitFlag lhs, BitFlag rhs) => lhs.flags_ <= rhs.flags_; public static bool operator <=(BitFlag lhs, int rhs) => lhs.flags_ <= rhs; public static bool operator <=(int lhs, BitFlag rhs) => lhs <= rhs.flags_; public static bool operator >=(BitFlag lhs, BitFlag rhs) => lhs.flags_ >= rhs.flags_; public static bool operator >=(BitFlag lhs, int rhs) => lhs.flags_ >= rhs; public static bool operator >=(int lhs, BitFlag rhs) => lhs >= rhs.flags_; public static implicit operator BitFlag(int t) => new BitFlag(t); public static implicit operator int(BitFlag t) => t.flags_; //public int PopCount => (int)Popcnt.PopCount((uint)flags_); public override string ToString() => $"{Convert.ToString(flags_, 2).PadLeft(32, '0')} ({flags_})"; [MethodImpl(MethodImplOptions.AggressiveInlining)] public void ForEachSubBits(Action<BitFlag> action) { for (BitFlag sub = flags_; sub >= 0; --sub) { sub &= flags_; action(sub); } } } public class HashMap<TKey, TValue> : Dictionary<TKey, TValue> { private readonly Func<TKey, TValue> initialzier_; public HashMap(Func<TKey, TValue> initialzier) : base() { initialzier_ = initialzier; } public HashMap(Func<TKey, TValue> initialzier, int capacity) : base(capacity) { initialzier_ = initialzier; } new public TValue this[TKey key] { get { if (TryGetValue(key, out TValue value)) { return value; } else { var init = initialzier_(key); base[key] = init; return init; } } set { base[key] = value; } } public HashMap<TKey, TValue> Merge( HashMap<TKey, TValue> src, Func<TValue, TValue, TValue> mergeValues) { foreach (var key in src.Keys) { this[key] = mergeValues(this[key], src[key]); } return this; } } public struct ModInt { //public const long P = 1000000007; public const long P = 998244353; public const long ROOT = 3; // (924844033, 5) // (998244353, 3) // (1012924417, 5) // (167772161, 3) // (469762049, 3) // (1224736769, 3) private long value_; public ModInt(long value) => value_ = value; public ModInt(long value, bool mods) { if (mods) { value %= P; if (value < 0) { value += P; } } value_ = value; } public static ModInt operator +(ModInt lhs, ModInt rhs) { lhs.value_ = (lhs.value_ + rhs.value_) % P; return lhs; } public static ModInt operator +(long lhs, ModInt rhs) { rhs.value_ = (lhs + rhs.value_) % P; return rhs; } public static ModInt operator +(ModInt lhs, long rhs) { lhs.value_ = (lhs.value_ + rhs) % P; return lhs; } public static ModInt operator -(ModInt lhs, ModInt rhs) { lhs.value_ = (P + lhs.value_ - rhs.value_) % P; return lhs; } public static ModInt operator -(long lhs, ModInt rhs) { rhs.value_ = (P + lhs - rhs.value_) % P; return rhs; } public static ModInt operator -(ModInt lhs, long rhs) { lhs.value_ = (P + lhs.value_ - rhs) % P; return lhs; } public static ModInt operator *(ModInt lhs, ModInt rhs) { lhs.value_ = lhs.value_ * rhs.value_ % P; return lhs; } public static ModInt operator *(long lhs, ModInt rhs) { rhs.value_ = lhs * rhs.value_ % P; return rhs; } public static ModInt operator *(ModInt lhs, long rhs) { lhs.value_ = lhs.value_ * rhs % P; return lhs; } public static ModInt operator /(ModInt lhs, ModInt rhs) { long exp = P - 2; while (exp > 0) { if (exp % 2 > 0) { lhs *= rhs; } rhs *= rhs; exp /= 2; } return lhs; } public static implicit operator ModInt(long n) => new ModInt(n, true); public static ModInt Inverse(ModInt value) => Pow(value, P - 2); public static ModInt Pow(ModInt value, long k) => Pow(value.value_, k); public static ModInt Pow(long value, long k) { long ret = 1; for (k %= P - 1; k > 0; k >>= 1, value = value * value % P) { if ((k & 1) == 1) { ret = ret * value % P; } } return new ModInt(ret); } public static Span<ModInt> NumberTheoreticTransform( Span<int> values, bool inverses = false) { var mods = new ModInt[values.Length]; for (int i = 0; i < mods.Length; i++) { mods[i] = new ModInt(values[i]); } return NumberTheoreticTransform(mods, inverses); } public static Span<ModInt> NumberTheoreticTransform( Span<long> values, bool inverses = false) { var mods = new ModInt[values.Length]; for (int i = 0; i < mods.Length; i++) { mods[i] = new ModInt(values[i]); } return NumberTheoreticTransform(mods, inverses); } public static Span<ModInt> NumberTheoreticTransform( Span<ModInt> a, bool inverses = false) { int n = a.Length; if (n == 1) { return a; } var b = new ModInt[n].AsSpan(); int r = inverses ? (int)(P - 1 - (P - 1) / n) : (int)((P - 1) / n); ModInt s = Pow(ROOT, r); var kp = new ModInt[n / 2 + 1]; kp.AsSpan().Fill(1); for (int i = 0; i < n / 2; ++i) { kp[i + 1] = kp[i] * s; } int l = n / 2; for (int i = 1; i < n; i <<= 1, l >>= 1) { r = 0; for (int j = 0; j < l; ++j, r += i) { s = kp[i * j]; for (int k = 0; k < i; ++k) { var p = a[k + r]; var q = a[k + r + n / 2]; b[k + 2 * r] = p + q; b[k + 2 * r + i] = (p - q) * s; } } var temp = a; a = b; b = temp; } if (inverses) { s = Inverse(n); for (int i = 0; i < n; i++) { a[i] = a[i] * s; } } return a; } public static ModInt[,] NumberTheoreticTransform2D(ModInt[,] a, bool inverses = false) { int h = a.GetLength(0); int w = a.GetLength(1); if (h == 1 && w == 1) { return a; } var b = new ModInt[h, w]; { int n = w; int r = inverses ? (int)(P - 1 - (P - 1) / n) : (int)((P - 1) / n); ModInt s = Pow(ROOT, r); var kp = new ModInt[n / 2 + 1]; kp.AsSpan().Fill(1); for (int i = 0; i < n / 2; ++i) { kp[i + 1] = kp[i] * s; } for (int y = 0; y < h; y++) { int l = n / 2; for (int i = 1; i < n; i <<= 1, l >>= 1) { r = 0; for (int j = 0; j < l; ++j, r += i) { s = kp[i * j]; for (int k = 0; k < i; ++k) { var p = a[y, k + r]; var q = a[y, k + r + n / 2]; b[y, k + 2 * r] = p + q; b[y, k + 2 * r + i] = (p - q) * s; } } var temp = a; a = b; b = temp; } if (inverses) { s = Inverse(n); for (int i = 0; i < n; i++) { a[y, i] = a[y, i] * s; } } } } for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { b[h, w] = 0; } } { int n = h; int r = inverses ? (int)(P - 1 - (P - 1) / n) : (int)((P - 1) / n); ModInt s = Pow(ROOT, r); var kp = new ModInt[n / 2 + 1]; kp.AsSpan().Fill(1); for (int i = 0; i < n / 2; ++i) { kp[i + 1] = kp[i] * s; } for (int x = 0; x < w; x++) { int l = n / 2; for (int i = 1; i < n; i <<= 1, l >>= 1) { r = 0; for (int j = 0; j < l; ++j, r += i) { s = kp[i * j]; for (int k = 0; k < i; ++k) { var p = a[k + r, x]; var q = a[k + r + n / 2, x]; b[k + 2 * r, x] = p + q; b[k + 2 * r + i, x] = (p - q) * s; } } var temp = a; a = b; b = temp; } if (inverses) { s = Inverse(n); for (int i = 0; i < n; i++) { a[i, x] = a[i, x] * s; } } } } return a; } public static Span<ModInt> Convolve(ReadOnlySpan<ModInt> a, ReadOnlySpan<ModInt> b) { int resultLength = a.Length + b.Length - 1; int nttLenght = 1; while (nttLenght < resultLength) { nttLenght <<= 1; } var aa = new ModInt[nttLenght]; a.CopyTo(aa); var bb = new ModInt[nttLenght]; b.CopyTo(bb); var fa = NumberTheoreticTransform(aa); var fb = NumberTheoreticTransform(bb); for (int i = 0; i < nttLenght; i++) { fa[i] *= fb[i]; } var convolved = NumberTheoreticTransform(fa, true); return convolved.Slice(0, resultLength); } public long ToLong() => value_; public override string ToString() => value_.ToString(); } public static class Helper { [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) > 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) > 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) < 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) < 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, T initialValue) where T : struct => new T[n].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, Func<int, T> initializer) => Enumerable.Range(0, n).Select(x => initializer(x)).ToArray(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Fill<T>(this T[] array, T value) where T : struct { array.AsSpan().Fill(value); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, T initialValule) where T : struct => new T[n, m].Fill(initialValule); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, Func<int, int, T> initializer) { var array = new T[n, m]; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { array[i, j] = initializer(i, j); } } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Fill<T>(this T[,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,] array, int i) => MemoryMarshal.CreateSpan<T>(ref array[i, 0], array.GetLength(1)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Array3<T>(int n1, int n2, int n3, T initialValue) where T : struct => new T[n1, n2, n3].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Fill<T>(this T[,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,] array, int i, int j) => MemoryMarshal.CreateSpan<T>(ref array[i, j, 0], array.GetLength(2)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Array4<T>(int n1, int n2, int n3, int n4, T initialValue) where T : struct => new T[n1, n2, n3, n4].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Fill<T>(this T[,,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,,] array, int i, int j, int k) => MemoryMarshal.CreateSpan<T>(ref array[i, j, k, 0], array.GetLength(3)); private static readonly int[] delta4_ = { 1, 0, -1, 0, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void DoIn4(int i, int j, int imax, int jmax, Action<int, int> action) { for (int dn = 0; dn < 4; ++dn) { int d4i = i + delta4_[dn]; int d4j = j + delta4_[dn + 1]; if ((uint)d4i < (uint)imax && (uint)d4j < (uint)jmax) { action(d4i, d4j); } } } private static readonly int[] delta8_ = { 1, 0, -1, 0, 1, 1, -1, -1, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void DoIn8(int i, int j, int imax, int jmax, Action<int, int> action) { for (int dn = 0; dn < 8; ++dn) { int d8i = i + delta8_[dn]; int d8j = j + delta8_[dn + 1]; if ((uint)d8i < (uint)imax && (uint)d8j < (uint)jmax) { action(d8i, d8j); } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ForEachSubBits(int bit, Action<int> action) { for (int sub = bit; sub >= 0; --sub) { sub &= bit; action(sub); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Reverse(string src) { var chars = src.ToCharArray(); for (int i = 0, j = chars.Length - 1; i < j; ++i, --j) { var tmp = chars[i]; chars[i] = chars[j]; chars[j] = tmp; } return new string(chars); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Join<T>(this IEnumerable<T> values, string separator = "") => string.Join(separator, values); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string JoinNL<T>(this IEnumerable<T> values) => string.Join(Environment.NewLine, values); } public class Scanner : IDisposable { private const int BUFFER_SIZE = 1024; private const int ASCII_CHAR_BEGIN = 33; private const int ASCII_CHAR_END = 126; private readonly string filePath_; private readonly Stream stream_; private readonly byte[] buf_ = new byte[BUFFER_SIZE]; private int length_ = 0; private int index_ = 0; private bool isEof_ = false; public Scanner(string file = "") { if (string.IsNullOrWhiteSpace(file)) { stream_ = Console.OpenStandardInput(); } else { filePath_ = file; stream_ = new FileStream(file, FileMode.Open); } Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }); } public void Dispose() { Console.Out.Flush(); stream_.Dispose(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public char Char() { byte b; do { b = Read(); } while (b < ASCII_CHAR_BEGIN || ASCII_CHAR_END < b); return (char)b; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string Next() { var sb = new StringBuilder(); for (var b = Char(); b >= ASCII_CHAR_BEGIN && b <= ASCII_CHAR_END; b = (char)Read()) { sb.Append(b); } return sb.ToString(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string[] ArrayString(int length) { var array = new string[length]; for (int i = 0; i < length; ++i) { array[i] = Next(); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int() => (int)Long(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int(int offset) => Int() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int) Int2(int offset = 0) => (Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int) Int3(int offset = 0) => (Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int, int) Int4(int offset = 0) => (Int(offset), Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int[] ArrayInt(int length, int offset = 0) { var array = new int[length]; for (int i = 0; i < length; ++i) { array[i] = Int(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long() { long ret = 0; byte b; bool ng = false; do { b = Read(); } while (b != '-' && (b < '0' || '9' < b)); if (b == '-') { ng = true; b = Read(); } for (; true; b = Read()) { if (b < '0' || '9' < b) { return ng ? -ret : ret; } else { ret = ret * 10 + b - '0'; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long(long offset) => Long() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long) Long2(long offset = 0) => (Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long) Long3(long offset = 0) => (Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long, long) Long4(long offset = 0) => (Long(offset), Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] ArrayLong(int length, long offset = 0) { var array = new long[length]; for (int i = 0; i < length; ++i) { array[i] = Long(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big() => new BigInteger(Long()); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big(long offset) => Big() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger) Big2(long offset = 0) => (Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger) Big3(long offset = 0) => (Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger, BigInteger) Big4(long offset = 0) => (Big(offset), Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger[] ArrayBig(int length, long offset = 0) { var array = new BigInteger[length]; for (int i = 0; i < length; ++i) { array[i] = Big(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double() => double.Parse(Next(), CultureInfo.InvariantCulture); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double(double offset) => Double() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double) Double2(double offset = 0) => (Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double) Double3(double offset = 0) => (Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double, double) Double4(double offset = 0) => (Double(offset), Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double[] ArrayDouble(int length, double offset = 0) { var array = new double[length]; for (int i = 0; i < length; ++i) { array[i] = Double(offset); } return array; } private byte Read() { if (isEof_) { throw new EndOfStreamException(); } if (index_ >= length_) { index_ = 0; if ((length_ = stream_.Read(buf_, 0, BUFFER_SIZE)) <= 0) { isEof_ = true; return 0; } } return buf_[index_++]; } public void Save(string text) { if (string.IsNullOrWhiteSpace(filePath_)) { return; } File.WriteAllText(filePath_ + "_output.txt", text); } } }