結果

問題 No.1307 Rotate and Accumulate
ユーザー hiromi_ayasehiromi_ayase
提出日時 2020-12-04 07:18:32
言語 Java21
(openjdk 21)
結果
AC  
実行時間 1,044 ms / 5,000 ms
コード長 8,982 bytes
コンパイル時間 2,789 ms
コンパイル使用メモリ 86,396 KB
実行使用メモリ 58,380 KB
最終ジャッジ日時 2024-09-14 17:28:00
合計ジャッジ時間 15,601 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 80 ms
38,128 KB
testcase_01 AC 75 ms
38,180 KB
testcase_02 AC 75 ms
38,252 KB
testcase_03 AC 79 ms
37,816 KB
testcase_04 AC 81 ms
38,100 KB
testcase_05 AC 79 ms
38,100 KB
testcase_06 AC 81 ms
38,240 KB
testcase_07 AC 77 ms
37,936 KB
testcase_08 AC 722 ms
53,644 KB
testcase_09 AC 708 ms
52,912 KB
testcase_10 AC 719 ms
53,092 KB
testcase_11 AC 696 ms
51,320 KB
testcase_12 AC 695 ms
53,764 KB
testcase_13 AC 321 ms
46,772 KB
testcase_14 AC 507 ms
48,424 KB
testcase_15 AC 1,044 ms
58,380 KB
testcase_16 AC 1,031 ms
58,032 KB
testcase_17 AC 1,028 ms
57,800 KB
testcase_18 AC 996 ms
56,444 KB
testcase_19 AC 1,025 ms
58,216 KB
testcase_20 AC 974 ms
57,468 KB
testcase_21 AC 77 ms
38,272 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import java.util.*;

class Convolution {
  /**
   * Find a primitive root.
   *
   * @param m A prime number.
   * @return Primitive root.
   */
  private static int primitiveRoot(int m) {
    if (m == 2)
      return 1;
    if (m == 167772161)
      return 3;
    if (m == 469762049)
      return 3;
    if (m == 754974721)
      return 11;
    if (m == 998244353)
      return 3;

    int[] divs = new int[20];
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0)
      x /= 2;
    for (int i = 3; (long) (i) * i <= x; i += 2) {
      if (x % i == 0) {
        divs[cnt++] = i;
        while (x % i == 0) {
          x /= i;
        }
      }
    }
    if (x > 1) {
      divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
      boolean ok = true;
      for (int i = 0; i < cnt; i++) {
        if (pow(g, (m - 1) / divs[i], m) == 1) {
          ok = false;
          break;
        }
      }
      if (ok)
        return g;
    }
  }

  /**
   * Power.
   *
   * @param x Parameter x.
   * @param n Parameter n.
   * @param m Mod.
   * @return n-th power of x mod m.
   */
  private static long pow(long x, long n, int m) {
    if (m == 1)
      return 0;
    long r = 1;
    long y = x % m;
    while (n > 0) {
      if ((n & 1) != 0)
        r = (r * y) % m;
      y = (y * y) % m;
      n >>= 1;
    }
    return r;
  }

  /**
   * Ceil of power 2.
   *
   * @param n Value.
   * @return Ceil of power 2.
   */
  private static int ceilPow2(int n) {
    int x = 0;
    while ((1L << x) < n)
      x++;
    return x;
  }

  /**
   * Garner's algorithm.
   *
   * @param c    Mod convolution results.
   * @param mods Mods.
   * @return Result.
   */
  private static long garner(long[] c, int[] mods) {
    int n = c.length + 1;
    long[] cnst = new long[n];
    long[] coef = new long[n];
    java.util.Arrays.fill(coef, 1);
    for (int i = 0; i < n - 1; i++) {
      int m1 = mods[i];
      long v = (c[i] - cnst[i] + m1) % m1;
      v = v * pow(coef[i], m1 - 2, m1) % m1;

      for (int j = i + 1; j < n; j++) {
        long m2 = mods[j];
        cnst[j] = (cnst[j] + coef[j] * v) % m2;
        coef[j] = (coef[j] * m1) % m2;
      }
    }
    return cnst[n - 1];
  }

  /**
   * Pre-calculation for NTT.
   *
   * @param mod NTT Prime.
   * @param g   Primitive root of mod.
   * @return Pre-calculation table.
   */
  private static long[] sumE(int mod, int g) {
    long[] sum_e = new long[30];
    long[] es = new long[30];
    long[] ies = new long[30];
    int cnt2 = Integer.numberOfTrailingZeros(mod - 1);
    long e = pow(g, (mod - 1) >> cnt2, mod);
    long ie = pow(e, mod - 2, mod);
    for (int i = cnt2; i >= 2; i--) {
      es[i - 2] = e;
      ies[i - 2] = ie;
      e = e * e % mod;
      ie = ie * ie % mod;
    }
    long now = 1;
    for (int i = 0; i < cnt2 - 2; i++) {
      sum_e[i] = es[i] * now % mod;
      now = now * ies[i] % mod;
    }
    return sum_e;
  }

  /**
   * Pre-calculation for inverse NTT.
   *
   * @param mod Mod.
   * @param g   Primitive root of mod.
   * @return Pre-calculation table.
   */
  private static long[] sumIE(int mod, int g) {
    long[] sum_ie = new long[30];
    long[] es = new long[30];
    long[] ies = new long[30];

    int cnt2 = Integer.numberOfTrailingZeros(mod - 1);
    long e = pow(g, (mod - 1) >> cnt2, mod);
    long ie = pow(e, mod - 2, mod);
    for (int i = cnt2; i >= 2; i--) {
      es[i - 2] = e;
      ies[i - 2] = ie;
      e = e * e % mod;
      ie = ie * ie % mod;
    }
    long now = 1;
    for (int i = 0; i < cnt2 - 2; i++) {
      sum_ie[i] = ies[i] * now % mod;
      now = now * es[i] % mod;
    }
    return sum_ie;
  }

  /**
   * Inverse NTT.
   *
   * @param a     Target array.
   * @param sumIE Pre-calculation table.
   * @param mod   NTT Prime.
   */
  private static void butterflyInv(long[] a, long[] sumIE, int mod) {
    int n = a.length;
    int h = ceilPow2(n);

    for (int ph = h; ph >= 1; ph--) {
      int w = 1 << (ph - 1), p = 1 << (h - ph);
      long inow = 1;
      for (int s = 0; s < w; s++) {
        int offset = s << (h - ph + 1);
        for (int i = 0; i < p; i++) {
          long l = a[i + offset];
          long r = a[i + offset + p];
          a[i + offset] = (l + r) % mod;
          a[i + offset + p] = (mod + l - r) * inow % mod;
        }
        int x = Integer.numberOfTrailingZeros(~s);
        inow = inow * sumIE[x] % mod;
      }
    }
  }

  /**
   * Inverse NTT.
   *
   * @param a    Target array.
   * @param sumE Pre-calculation table.
   * @param mod  NTT Prime.
   */
  private static void butterfly(long[] a, long[] sumE, int mod) {
    int n = a.length;
    int h = ceilPow2(n);

    for (int ph = 1; ph <= h; ph++) {
      int w = 1 << (ph - 1), p = 1 << (h - ph);
      long now = 1;
      for (int s = 0; s < w; s++) {
        int offset = s << (h - ph + 1);
        for (int i = 0; i < p; i++) {
          long l = a[i + offset];
          long r = a[i + offset + p] * now % mod;
          a[i + offset] = (l + r) % mod;
          a[i + offset + p] = (l - r + mod) % mod;
        }
        int x = Integer.numberOfTrailingZeros(~s);
        now = now * sumE[x] % mod;
      }
    }
  }

  /**
   * Convolution.
   *
   * @param a   Target array 1.
   * @param b   Target array 2.
   * @param mod NTT Prime.
   * @return Answer.
   */
  public static long[] convolution(long[] a, long[] b, int mod) {
    int n = a.length;
    int m = b.length;
    if (n == 0 || m == 0)
      return new long[0];

    int z = 1 << ceilPow2(n + m - 1);
    {
      long[] na = new long[z];
      long[] nb = new long[z];
      System.arraycopy(a, 0, na, 0, n);
      System.arraycopy(b, 0, nb, 0, m);
      a = na;
      b = nb;
    }

    int g = primitiveRoot(mod);
    long[] sume = sumE(mod, g);
    long[] sumie = sumIE(mod, g);

    butterfly(a, sume, mod);
    butterfly(b, sume, mod);
    for (int i = 0; i < z; i++) {
      a[i] = a[i] * b[i] % mod;
    }
    butterflyInv(a, sumie, mod);
    a = java.util.Arrays.copyOf(a, n + m - 1);

    long iz = pow(z, mod - 2, mod);
    for (int i = 0; i < n + m - 1; i++)
      a[i] = a[i] * iz % mod;
    return a;
  }
}

@SuppressWarnings("unused")
public class Main {

  private static void solve() {
    int n = ni();
    int q = ni();
    long[] a = new long[n * 2];
    long[] b = new long[n];
    for (int i = 0; i < n; i++) {
      a[i] = a[i + n] = ni();
    }
    for (int i = 0; i < q; i++) {
      b[n - ni() - 1]++;
    }

    int mod = 998244353;
    long[] ret = Convolution.convolution(a, b, mod);
    for (int i = n - 1; i < n + n - 1; i++) {
      out.print(ret[i] + " ");
    }
    out.println();
  }

  public static void main(String[] args) {
    new Thread(null, new Runnable() {
      @Override
      public void run() {
        long start = System.currentTimeMillis();
        String debug = args.length > 0 ? args[0] : null;
        if (debug != null) {
          try {
            is = java.nio.file.Files.newInputStream(java.nio.file.Paths.get(debug));
          } catch (Exception e) {
            throw new RuntimeException(e);
          }
        }
        reader = new java.io.BufferedReader(new java.io.InputStreamReader(is), 32768);
        solve();
        out.flush();
        tr((System.currentTimeMillis() - start) + "ms");
      }
    }, "", 64000000).start();
  }

  private static java.io.InputStream is = System.in;
  private static java.io.PrintWriter out = new java.io.PrintWriter(System.out);
  private static java.util.StringTokenizer tokenizer = null;
  private static java.io.BufferedReader reader;

  public static String next() {
    while (tokenizer == null || !tokenizer.hasMoreTokens()) {
      try {
        tokenizer = new java.util.StringTokenizer(reader.readLine());
      } catch (Exception e) {
        throw new RuntimeException(e);
      }
    }
    return tokenizer.nextToken();
  }

  private static double nd() {
    return Double.parseDouble(next());
  }

  private static long nl() {
    return Long.parseLong(next());
  }

  private static int[] na(int n) {
    int[] a = new int[n];
    for (int i = 0; i < n; i++)
      a[i] = ni();
    return a;
  }

  private static char[] ns() {
    return next().toCharArray();
  }

  private static long[] nal(int n) {
    long[] a = new long[n];
    for (int i = 0; i < n; i++)
      a[i] = nl();
    return a;
  }

  private static int[][] ntable(int n, int m) {
    int[][] table = new int[n][m];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        table[i][j] = ni();
      }
    }
    return table;
  }

  private static int[][] nlist(int n, int m) {
    int[][] table = new int[m][n];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        table[j][i] = ni();
      }
    }
    return table;
  }

  private static int ni() {
    return Integer.parseInt(next());
  }

  private static void tr(Object... o) {
    if (is != System.in)
      System.out.println(java.util.Arrays.deepToString(o));
  }
}
0