結果

問題 No.931 Multiplicative Convolution
ユーザー rniyarniya
提出日時 2020-12-04 11:31:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 94 ms / 2,000 ms
コード長 9,551 bytes
コンパイル時間 2,461 ms
コンパイル使用メモリ 214,852 KB
実行使用メモリ 10,020 KB
最終ジャッジ日時 2024-09-14 21:47:55
合計ジャッジ時間 5,128 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 10 ms
5,376 KB
testcase_08 AC 70 ms
10,020 KB
testcase_09 AC 55 ms
9,948 KB
testcase_10 AC 68 ms
9,848 KB
testcase_11 AC 56 ms
9,768 KB
testcase_12 AC 40 ms
7,044 KB
testcase_13 AC 94 ms
9,904 KB
testcase_14 AC 76 ms
9,952 KB
testcase_15 AC 70 ms
10,020 KB
testcase_16 AC 68 ms
9,908 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
// const long long MOD=1000000007;
const long long MOD=998244353;
#define LOCAL
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(),(x).end()
const int INF=1e9;
const long long IINF=1e18;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
const char dir[4]={'D','R','U','L'};

template<typename T>
istream &operator>>(istream &is,vector<T> &v){
    for (T &x:v) is >> x;
    return is;
}
template<typename T>
ostream &operator<<(ostream &os,const vector<T> &v){
    for (int i=0;i<v.size();++i){
        os << v[i] << (i+1==v.size()?"": " ");
    }
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const pair<T,U> &p){
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template<typename T,typename U,typename V>
ostream&operator<<(ostream &os,const tuple<T,U,V> &t){
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')';
    return os;
}
template<typename T,typename U,typename V,typename W>
ostream&operator<<(ostream &os,const tuple<T,U,V,W> &t){
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')';
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const map<T,U> &m){
    os << '{';
    for (auto itr=m.begin();itr!=m.end();){
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr!=m.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const unordered_map<T,U> &m){
    os << '{';
    for (auto itr=m.begin();itr!=m.end();){
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr!=m.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const set<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const multiset<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const unordered_set<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const deque<T> &v){
    for (int i=0;i<v.size();++i){
        os << v[i] << (i+1==v.size()?"": " ");
    }
    return os;
}

void debug_out(){cerr << '\n';}
template<class Head,class... Tail>
void debug_out(Head&& head,Tail&&... tail){
    cerr << head;
    if (sizeof...(Tail)>0) cerr << ", ";
    debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) cerr << " ";\
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\
cerr << " ";\
debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif

template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;}
template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;}

template<class T1,class T2> inline bool chmin(T1 &a,T2 b){
    if (a>b){a=b; return true;} return false;
}
template<class T1,class T2> inline bool chmax(T1 &a,T2 b){
    if (a<b){a=b; return true;} return false;
}
#pragma endregion

template<uint32_t mod> class modint{
    using i64=int64_t;
    using u32=uint32_t;
    using u64=uint64_t;
public:
    u32 v;
    constexpr modint(const i64 x=0) noexcept :v(x<0?mod-1-(-(x+1)%mod):x%mod){}
    constexpr u32 &value() noexcept {return v;}
    constexpr const u32 &value() const noexcept {return v;}
    constexpr modint operator+(const modint &rhs) const noexcept {return modint(*this)+=rhs;}
    constexpr modint operator-(const modint &rhs) const noexcept {return modint(*this)-=rhs;}
    constexpr modint operator*(const modint &rhs) const noexcept {return modint(*this)*=rhs;}
    constexpr modint operator/(const modint &rhs) const noexcept {return modint(*this)/=rhs;}
    constexpr modint &operator+=(const modint &rhs) noexcept {
        v+=rhs.v;
        if (v>=mod) v-=mod;
        return *this;
    }
    constexpr modint &operator-=(const modint &rhs) noexcept {
        if (v<rhs.v) v+=mod;
        v-=rhs.v;
        return *this;
    }
    constexpr modint &operator*=(const modint &rhs) noexcept {
        v=(u64)v*rhs.v%mod;
        return *this;
    }
    constexpr modint &operator/=(const modint &rhs) noexcept {
        return *this*=rhs.pow(mod-2);
    }
    constexpr modint pow(u64 exp) const noexcept {
        modint self(*this),res(1);
        while (exp>0){
            if (exp&1) res*=self;
            self*=self; exp>>=1;
        }
        return res;
    }
    constexpr modint &operator++() noexcept {if (++v==mod) v=0; return *this;}
    constexpr modint &operator--() noexcept {if (v==0) v=mod; return --v,*this;}
    constexpr modint operator++(int) noexcept {modint t=*this; return ++*this,t;}
    constexpr modint operator--(int) noexcept {modint t=*this; return --*this,t;}
    constexpr modint operator-() const noexcept {return modint(mod-v);}
    template<class T> friend constexpr modint operator+(T x,modint y) noexcept {return modint(x)+y;}
    template<class T> friend constexpr modint operator-(T x,modint y) noexcept {return modint(x)-y;}
    template<class T> friend constexpr modint operator*(T x,modint y) noexcept {return modint(x)*y;}
    template<class T> friend constexpr modint operator/(T x,modint y) noexcept {return modint(x)/y;}
    constexpr bool operator==(const modint &rhs) const noexcept {return v==rhs.v;}
    constexpr bool operator!=(const modint &rhs) const noexcept {return v!=rhs.v;}
    constexpr bool operator!() const noexcept {return !v;}
    friend istream &operator>>(istream &s,modint &rhs) noexcept {
        i64 v; rhs=modint{(s>>v,v)}; return s;
    }
    friend ostream &operator<<(ostream &s,const modint &rhs) noexcept {
        return s<<rhs.v;
    }
};

template<int mod>
struct NumberTheoreticTransform{
    using Mint=modint<mod>;
    vector<Mint> roots;
    vector<int> rev;
    int base,max_base;
    Mint root;
    NumberTheoreticTransform():base(1),rev{0,1},roots{Mint(0),Mint(1)}{
        int tmp=mod-1;
        for (max_base=0;tmp%2==0;++max_base) tmp>>=1;
        root=2;
        while (root.pow((mod-1)>>1)==1) ++root;
        root=root.pow((mod-1)>>max_base);
    }
    void ensure_base(int nbase){
        if (nbase<=base) return;
        rev.resize(1<<nbase);
        for (int i=0;i<(1<<nbase);++i){
            rev[i]=(rev[i>>1]>>1)|((i&1)<<(nbase-1));
        }
        roots.resize(1<<nbase);
        for (;base<nbase;++base){
            Mint z=root.pow(1<<(max_base-1-base));
            for (int i=1<<(base-1);i<(1<<base);++i){
                roots[i<<1]=roots[i];
                roots[i<<1|1]=roots[i]*z;
            }
        }
    }
    void ntt(vector<Mint> &a){
        const int n=a.size();
        int zeros=__builtin_ctz(n);
        ensure_base(zeros);
        int shift=base-zeros;
        for (int i=0;i<n;++i){
            if (i<(rev[i]>>shift)){
                swap(a[i],a[rev[i]>>shift]);
            }
        }
        for (int k=1;k<n;k<<=1){
            for (int i=0;i<n;i+=(k<<1)){
                for (int j=0;j<k;++j){
                    Mint z=a[i+j+k]*roots[j+k];
                    a[i+j+k]=a[i+j]-z;
                    a[i+j]=a[i+j]+z;
                }
            }
        }
    }
    vector<Mint> multiply(vector<Mint> a,vector<Mint> b){
        int need=a.size()+b.size()-1;
        int nbase=1;
        while ((1<<nbase)<need) ++nbase;
        ensure_base(nbase);
        int sz=1<<nbase;
        a.resize(sz,Mint(0)); b.resize(sz,Mint(0));
        ntt(a); ntt(b);
        Mint inv_sz=1/Mint(sz);
        for (int i=0;i<sz;++i) a[i]*=b[i]*inv_sz;
        reverse(a.begin()+1,a.end());
        ntt(a);
        a.resize(need);
        return a;
    }
    vector<int> multiply(vector<int> a,vector<int> b){
        vector<Mint> A(a.size()),B(b.size());
        for (int i=0;i<a.size();++i) A[i]=Mint(a[i]);
        for (int i=0;i<b.size();++i) B[i]=Mint(b[i]);
        vector<Mint> C=multiply(A,B);
        vector<int> res(C.size());
        for (int i=0;i<C.size();++i) res[i]=C[i].v;
        return res;
    }
};

long long modpow(long long x,long long n,long long mod){
    long long res=1;
    while (n>0){
        if (n&1LL) res=res*x%mod;
        x=x*x%mod; n>>=1LL;
    }
    return res;
}

using mint=modint<MOD>;

int main(){
    cin.tie(0);
    ios::sync_with_stdio(false);
    int P; cin >> P;
    vector<mint> A(P),B(P);
    for (int i=1;i<P;++i) cin >> A[i];
    for (int i=1;i<P;++i) cin >> B[i];

    auto primitive_root=[](int p)->int{
        for (int x=1;;++x){
            long long power=1;
            for (int i=0;i<p;++i){
                (power*=x)%=p;
                if (i==p-2) return x;
                if (power==1) break;
            }
        }
    };

    int r=primitive_root(P);
    vector<mint> a(P-1),b(P-1);
    vector<long long> power(P,1);
    for (int i=0;i<P-1;++i){
        a[i]=A[power[i]]; b[i]=B[power[i]];
        power[i+1]=power[i]*r%P;
    }

    NumberTheoreticTransform<MOD> NTT;
    vector<mint> c=NTT.multiply(a,b),ans(P);
    for (int i=0;i<c.size();++i){
        ans[power[i%(P-1)]]+=c[i];
    }

    for (int i=1;i<P;++i) cout << ans[i] << (i+1==P?'\n':' ');
}
0