結果
問題 | No.1307 Rotate and Accumulate |
ユーザー | Haar |
提出日時 | 2020-12-04 12:05:15 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 92 ms / 5,000 ms |
コード長 | 16,380 bytes |
コンパイル時間 | 2,720 ms |
コンパイル使用メモリ | 222,200 KB |
実行使用メモリ | 13,076 KB |
最終ジャッジ日時 | 2024-09-14 22:17:36 |
合計ジャッジ時間 | 5,417 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 44 ms
8,804 KB |
testcase_09 | AC | 47 ms
9,072 KB |
testcase_10 | AC | 51 ms
8,064 KB |
testcase_11 | AC | 41 ms
8,496 KB |
testcase_12 | AC | 50 ms
8,192 KB |
testcase_13 | AC | 13 ms
5,376 KB |
testcase_14 | AC | 26 ms
5,632 KB |
testcase_15 | AC | 92 ms
12,948 KB |
testcase_16 | AC | 92 ms
13,068 KB |
testcase_17 | AC | 92 ms
12,944 KB |
testcase_18 | AC | 86 ms
13,072 KB |
testcase_19 | AC | 91 ms
13,068 KB |
testcase_20 | AC | 92 ms
13,076 KB |
testcase_21 | AC | 2 ms
5,376 KB |
ソースコード
#line 1 "main.cpp" #include <bits/stdc++.h> #ifdef DEBUG #include <Mylib/Debug/debug.cpp> #else #define dump(...) ((void)0) #endif template <typename T, typename U> bool chmin(T &a, const U &b){ return (a > b ? a = b, true : false); } template <typename T, typename U> bool chmax(T &a, const U &b){ return (a < b ? a = b, true : false); } template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){ std::fill((U*)a, (U*)(a + N), v); } template <typename T, size_t N, size_t I = N> auto make_vector(const std::array<int, N> &a, T value = T()){ static_assert(I >= 1); static_assert(N >= 1); if constexpr (I == 1){ return std::vector<T>(a[N - I], value); }else{ return std::vector(a[N - I], make_vector<T, N, I - 1>(a, value)); } } template <typename T> std::ostream& operator<<(std::ostream &s, const std::vector<T> &a){ for(auto it = a.begin(); it != a.end(); ++it){ if(it != a.begin()) s << " "; s << *it; } return s; } template <typename T> std::istream& operator>>(std::istream &s, std::vector<T> &a){ for(auto &x : a) s >> x; return s; } std::string YesNo(bool value){return value ? "Yes" : "No";} std::string YESNO(bool value){return value ? "YES" : "NO";} std::string yesno(bool value){return value ? "yes" : "no";} template <typename T> void putl(const T &value){ std::cout << value << "\n"; } template <typename Head, typename ... Tail> void putl(const Head head, const Tail &... tail){ std::cout << head << " "; putl(tail ...); } #line 4 "/home/haar/Downloads/kyopro-lib/Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod(){return M;} constexpr modint(): val_(0){} constexpr modint(int64_t n){ if(n >= M) val_ = n % M; else if(n < 0) val_ = n % M + M; else val_ = n; } constexpr auto& operator=(const modint &a){val_ = a.val_; return *this;} constexpr auto& operator+=(const modint &a){ if(val_ + a.val_ >= M) val_ = (uint64_t)val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto& operator-=(const modint &a){ if(val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto& operator*=(const modint &a){ val_ = (uint64_t)val_ * a.val_ % M; return *this; } constexpr auto& operator/=(const modint &a){ val_ = (uint64_t)val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const {return modint(*this) += a;} constexpr auto operator-(const modint &a) const {return modint(*this) -= a;} constexpr auto operator*(const modint &a) const {return modint(*this) *= a;} constexpr auto operator/(const modint &a) const {return modint(*this) /= a;} constexpr bool operator==(const modint &a) const {return val_ == a.val_;} constexpr bool operator!=(const modint &a) const {return val_ != a.val_;} constexpr auto& operator++(){*this += 1; return *this;} constexpr auto& operator--(){*this -= 1; return *this;} constexpr auto operator++(int){auto t = *this; *this += 1; return t;} constexpr auto operator--(int){auto t = *this; *this -= 1; return t;} constexpr static modint pow(int64_t n, int64_t p){ if(p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for(; p; (e *= e) %= M, p >>= 1) if(p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a){ int64_t b = M, u = 1, v = 0; while(b){ int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if(u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b){return modint(a) / modint(b);} constexpr auto pow(int64_t p) const {return pow(val_, p);} constexpr auto inv() const {return inv(val_);} friend constexpr auto operator-(const modint &a){return modint(M - a.val_);} friend constexpr auto operator+(int64_t a, const modint &b){return modint(a) + b;} friend constexpr auto operator-(int64_t a, const modint &b){return modint(a) - b;} friend constexpr auto operator*(int64_t a, const modint &b){return modint(a) * b;} friend constexpr auto operator/(int64_t a, const modint &b){return modint(a) / b;} friend std::istream& operator>>(std::istream &s, modint &a){s >> a.val_; return s;} friend std::ostream& operator<<(std::ostream &s, const modint &a){s << a.val_; return s;} template <int N> static auto div(){ static auto value = inv(N); return value; } explicit operator int32_t() const noexcept {return val_;} explicit operator int64_t() const noexcept {return val_;} }; } #line 7 "/home/haar/Downloads/kyopro-lib/Mylib/Convolution/ntt_convolution.cpp" namespace haar_lib { template <typename T, int PRIM_ROOT, int MAX_SIZE> class number_theoretic_transform { public: using value_type = T; constexpr static int primitive_root = PRIM_ROOT; constexpr static int max_size = MAX_SIZE; private: const int MAX_POWER_; std::vector<T> BASE_, INV_BASE_; public: number_theoretic_transform(): MAX_POWER_(__builtin_ctz(MAX_SIZE)), BASE_(MAX_POWER_ + 1), INV_BASE_(MAX_POWER_ + 1) { static_assert((MAX_SIZE & (MAX_SIZE - 1)) == 0, "MAX_SIZE must be power of 2."); T t = T::pow(PRIM_ROOT, (T::mod() - 1) >> (MAX_POWER_ + 2)); T s = t.inv(); for(int i = MAX_POWER_; --i >= 0;){ t *= t; s *= s; BASE_[i] = -t; INV_BASE_[i] = -s; } } void run(std::vector<T> &f, bool INVERSE = false) const { const int n = f.size(); assert((n & (n - 1)) == 0 and n <= MAX_SIZE); // データ数は2の冪乗個 if(INVERSE){ for(int b = 1; b < n; b <<= 1){ T w = 1; for(int j = 0, k = 1; j < n; j += 2 * b, ++k){ for(int i = 0; i < b; ++i){ const auto s = f[i + j]; const auto t = f[i + j + b]; f[i + j] = s + t; f[i + j + b] = (s - t) * w; } w *= INV_BASE_[__builtin_ctz(k)]; } } const T t = T::inv(n); for(auto &x : f) x *= t; }else{ for(int b = n >> 1; b; b >>= 1){ T w = 1; for(int j = 0, k = 1; j < n; j += 2 * b, ++k){ for(int i = 0; i < b; ++i){ const auto s = f[i + j]; const auto t = f[i + j + b] * w; f[i + j] = s + t; f[i + j + b] = s - t; } w *= BASE_[__builtin_ctz(k)]; } } } } template <typename U> std::vector<T> convolve(std::vector<U> f, std::vector<U> g) const { const int m = f.size() + g.size() - 1; int n = 1; while(n < m) n *= 2; std::vector<T> f2(n), g2(n); for(int i = 0; i < (int)f.size(); ++i) f2[i] = (int64_t)f[i]; for(int i = 0; i < (int)g.size(); ++i) g2[i] = (int64_t)g[i]; run(f2); run(g2); for(int i = 0; i < n; ++i) f2[i] *= g2[i]; run(f2, true); return f2; } template <typename U> std::vector<T> operator()(std::vector<U> f, std::vector<U> g) const { return convolve(f, g); } }; template <typename T> std::vector<T> convolve_general_mod(std::vector<T> f, std::vector<T> g){ static constexpr int M1 = 167772161, P1 = 3; static constexpr int M2 = 469762049, P2 = 3; static constexpr int M3 = 1224736769, P3 = 3; auto res1 = number_theoretic_transform<modint<M1>, P1, 1 << 20>().convolve(f, g); auto res2 = number_theoretic_transform<modint<M2>, P2, 1 << 20>().convolve(f, g); auto res3 = number_theoretic_transform<modint<M3>, P3, 1 << 20>().convolve(f, g); const int n = res1.size(); std::vector<T> ret(n); const int64_t M12 = (int64_t)modint<M2>::inv(M1); const int64_t M13 = (int64_t)modint<M3>::inv(M1); const int64_t M23 = (int64_t)modint<M3>::inv(M2); for(int i = 0; i < n; ++i){ const int64_t r[3] = {(int64_t)res1[i], (int64_t)res2[i], (int64_t)res3[i]}; const int64_t t0 = r[0] % M1; const int64_t t1 = (r[1] - t0 + M2) * M12 % M2; const int64_t t2 = ((r[2] - t0 + M3) * M13 % M3 - t1 + M3) * M23 % M3; ret[i] = T(t0) + T(t1) * M1 + T(t2) * M1 * M2; } return ret; } } #line 4 "/home/haar/Downloads/kyopro-lib/Mylib/Math/formal_power_series.cpp" #include <initializer_list> #line 6 "/home/haar/Downloads/kyopro-lib/Mylib/Math/formal_power_series.cpp" namespace haar_lib { template <typename T, const auto &convolve> class formal_power_series { public: using value_type = T; private: std::vector<T> data_; public: formal_power_series(){} explicit formal_power_series(int N): data_(N){} formal_power_series(const std::vector<T> &data_): data_(data_){} formal_power_series(std::initializer_list<T> init): data_(init.begin(), init.end()){} formal_power_series(const formal_power_series &a): data_(a.data_){} formal_power_series(formal_power_series &&a) noexcept {*this = std::move(a);} size_t size() const { return data_.size(); } const T& operator[](int i) const { return data_[i]; } T& operator[](int i){ return data_[i]; } auto begin() {return data_.begin();} auto end() {return data_.end();} const auto& data() const {return data_;} void resize(int n){ data_.resize(n); } auto& operator=(formal_power_series &&rhs) noexcept { if(this != &rhs){ data_ = std::move(rhs.data_); } return *this; } auto& operator+=(const formal_power_series &rhs){ if(data_.size() < rhs.size()) data_.resize(rhs.size()); for(int i = 0; i < rhs.size(); ++i) data_[i] += rhs[i]; return *this; } auto& operator+=(T rhs){ data_[0] += rhs; return *this; } auto operator+(T rhs) const { auto ret = *this; return ret += rhs; } auto operator+(const formal_power_series &rhs) const { auto ret = *this; return ret += rhs; } auto& operator-=(const formal_power_series &rhs){ if(data_.size() < rhs.size()) data_.resize(rhs.size()); for(int i = 0; i < rhs.size(); ++i) data_[i] -= rhs[i]; return *this; } auto& operator-=(T rhs){ data_[0] -= rhs; return *this; } auto operator-(T rhs) const { auto ret = *this; return ret -= rhs; } auto operator-(const formal_power_series &rhs) const { auto ret = *this; return ret -= rhs; } auto operator-() const { auto ret = *this; for(auto &x : ret) x = -x; return ret; } auto& operator*=(const formal_power_series &rhs){ data_ = convolve(data_, rhs.data_); return *this; } auto operator*(const formal_power_series &rhs) const { auto ret = convolve(data_, rhs.data_); return formal_power_series(ret); } auto& operator*=(T rhs){ for(auto &x : data_) x *= rhs; return *this; } auto operator*(T rhs) const { auto ret = *this; return ret *= rhs; } auto differentiate() const { const int n = data_.size(); std::vector<T> ret(n - 1); for(int i = 0; i < n - 1; ++i){ ret[i] = data_[i + 1] * (i + 1); } return formal_power_series(ret); } auto integrate() const { const int n = data_.size(); std::vector<T> ret(n + 1); for(int i = 0; i < n; ++i){ ret[i + 1] = data_[i] / (i + 1); } return formal_power_series(ret); } auto inv() const { assert(data_[0] != 0); const int n = data_.size(); int t = 1; std::vector<T> ret = {data_[0].inv()}; ret.reserve(n * 2); while(t <= n * 2){ std::vector<T> c(data_.begin(), data_.begin() + std::min(t, n)); c = convolve(c, convolve(ret, ret)); c.resize(t); ret.resize(t); for(int i = 0; i < t; ++i){ ret[i] = ret[i] * 2 - c[i]; } t <<= 1; } ret.resize(n); return formal_power_series(ret); } auto log() const { assert(data_[0] == 1); const int n = data_.size(); auto ret = (differentiate() * inv()).integrate(); ret.resize(n); return ret; } auto exp() const { const int n = data_.size(); int t = 1; formal_power_series b({1}); while(t <= n * 2){ t <<= 1; auto temp = b.log(); temp.resize(t); for(int i = 0; i < t; ++i) temp[i] = -temp[i]; temp[0] += 1; for(int i = 0; i < std::min(t, n); ++i) temp[i] += data_[i]; b = b * temp; b.resize(t); } b.resize(n); return b; } auto shift(int64_t k) const { const int64_t n = data_.size(); formal_power_series ret(n); if(k >= 0){ for(int64_t i = k; i < n; ++i){ ret[i] = data_[i - k]; } }else{ for(int64_t i = 0; i < n + k; ++i){ ret[i] = data_[i - k]; } } return ret; } auto pow(int64_t M) const { assert(M >= 0); const int n = data_.size(); int k = 0; for(; k < n; ++k){ if(data_[k] != 0){ break; } } if(k >= n) return *this; T a = data_[k]; formal_power_series ret = *this; ret = (ret.shift(-k)) * a.inv(); ret = (ret.log() * (T)M).exp(); ret = (ret * a.pow(M)).shift(M * k); return ret; } std::optional<formal_power_series> sqrt() const; }; } #line 3 "/home/haar/Downloads/kyopro-lib/Mylib/Number/Mod/mod_pow.cpp" namespace haar_lib { constexpr int64_t mod_pow(int64_t n, int64_t p, int64_t m){ int64_t ret = 1; while(p > 0){ if(p & 1) (ret *= n) %= m; (n *= n) %= m; p >>= 1; } return ret; } } #line 3 "/home/haar/Downloads/kyopro-lib/Mylib/Number/Prime/primitive_root.cpp" namespace haar_lib { constexpr int primitive_root(int p){ int pf[30] = {}; int k = 0; { int n = p - 1; for(int64_t i = 2; i * i <= p; ++i){ if(n % i == 0){ pf[k++] = i; while(n % i == 0) n /= i; } } if(n != 1) pf[k++] = n; } for(int g = 2; g <= p; ++g){ bool ok = true; for(int i = 0; i < k; ++i){ if(mod_pow(g, (p - 1) / pf[i], p) == 1){ ok = false; break; } } if(not ok) continue; return g; } return -1; } } #line 5 "/home/haar/Downloads/kyopro-lib/Mylib/IO/join.cpp" namespace haar_lib { template <typename Iter> std::string join(Iter first, Iter last, std::string delim = " "){ std::stringstream s; for(auto it = first; it != last; ++it){ if(it != first) s << delim; s << *it; } return s.str(); } } #line 70 "main.cpp" namespace haar_lib {} namespace solver { using namespace haar_lib; constexpr int m1000000007 = 1000000007; constexpr int m998244353 = 998244353; void init(){ std::cin.tie(0); std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(12); std::cerr << std::fixed << std::setprecision(12); std::cin.exceptions(std::ios_base::failbit); } using mint = modint<m998244353>; constexpr int prim_root = primitive_root(m998244353); const static auto ntt = number_theoretic_transform<mint, prim_root, 1 << 21>(); using FPS = formal_power_series<mint, ntt>; void solve(){ int N, Q; std::cin >> N >> Q; std::vector<int> a(N); std::cin >> a; std::vector<int> r(Q); std::cin >> r; std::vector<mint> s(N); for(int x : r){ s[N - 1 - x] += 1; } std::vector<mint> t(a.begin(), a.end()); t.insert(t.end(), a.begin(), a.end()); auto res = FPS(s) * FPS(t); dump(res.data()); std::cout << join(res.begin() + N - 1, res.begin() + (2 * N - 1)) << "\n"; } } int main(){ solver::init(); while(true){ try{ solver::solve(); std::cout << std::flush; std::cerr << std::flush; }catch(const std::istream::failure &e){ break; }catch(...){ break; } } return 0; }