結果
問題 | No.1307 Rotate and Accumulate |
ユーザー |
|
提出日時 | 2020-12-04 12:05:15 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 99 ms / 5,000 ms |
コード長 | 16,380 bytes |
コンパイル時間 | 2,445 ms |
コンパイル使用メモリ | 213,376 KB |
最終ジャッジ日時 | 2025-01-16 15:41:52 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 19 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#ifdef DEBUG#include <Mylib/Debug/debug.cpp>#else#define dump(...) ((void)0)#endiftemplate <typename T, typename U>bool chmin(T &a, const U &b){return (a > b ? a = b, true : false);}template <typename T, typename U>bool chmax(T &a, const U &b){return (a < b ? a = b, true : false);}template <typename T, size_t N, typename U>void fill_array(T (&a)[N], const U &v){std::fill((U*)a, (U*)(a + N), v);}template <typename T, size_t N, size_t I = N>auto make_vector(const std::array<int, N> &a, T value = T()){static_assert(I >= 1);static_assert(N >= 1);if constexpr (I == 1){return std::vector<T>(a[N - I], value);}else{return std::vector(a[N - I], make_vector<T, N, I - 1>(a, value));}}template <typename T>std::ostream& operator<<(std::ostream &s, const std::vector<T> &a){for(auto it = a.begin(); it != a.end(); ++it){if(it != a.begin()) s << " ";s << *it;}return s;}template <typename T>std::istream& operator>>(std::istream &s, std::vector<T> &a){for(auto &x : a) s >> x;return s;}std::string YesNo(bool value){return value ? "Yes" : "No";}std::string YESNO(bool value){return value ? "YES" : "NO";}std::string yesno(bool value){return value ? "yes" : "no";}template <typename T>void putl(const T &value){std::cout << value << "\n";}template <typename Head, typename ... Tail>void putl(const Head head, const Tail &... tail){std::cout << head << " ";putl(tail ...);}#line 4 "/home/haar/Downloads/kyopro-lib/Mylib/Number/Mint/mint.cpp"namespace haar_lib {template <int32_t M>class modint {uint32_t val_;public:constexpr static auto mod(){return M;}constexpr modint(): val_(0){}constexpr modint(int64_t n){if(n >= M) val_ = n % M;else if(n < 0) val_ = n % M + M;else val_ = n;}constexpr auto& operator=(const modint &a){val_ = a.val_; return *this;}constexpr auto& operator+=(const modint &a){if(val_ + a.val_ >= M) val_ = (uint64_t)val_ + a.val_ - M;else val_ += a.val_;return *this;}constexpr auto& operator-=(const modint &a){if(val_ < a.val_) val_ += M;val_ -= a.val_;return *this;}constexpr auto& operator*=(const modint &a){val_ = (uint64_t)val_ * a.val_ % M;return *this;}constexpr auto& operator/=(const modint &a){val_ = (uint64_t)val_ * a.inv().val_ % M;return *this;}constexpr auto operator+(const modint &a) const {return modint(*this) += a;}constexpr auto operator-(const modint &a) const {return modint(*this) -= a;}constexpr auto operator*(const modint &a) const {return modint(*this) *= a;}constexpr auto operator/(const modint &a) const {return modint(*this) /= a;}constexpr bool operator==(const modint &a) const {return val_ == a.val_;}constexpr bool operator!=(const modint &a) const {return val_ != a.val_;}constexpr auto& operator++(){*this += 1; return *this;}constexpr auto& operator--(){*this -= 1; return *this;}constexpr auto operator++(int){auto t = *this; *this += 1; return t;}constexpr auto operator--(int){auto t = *this; *this -= 1; return t;}constexpr static modint pow(int64_t n, int64_t p){if(p < 0) return pow(n, -p).inv();int64_t ret = 1, e = n % M;for(; p; (e *= e) %= M, p >>= 1) if(p & 1) (ret *= e) %= M;return ret;}constexpr static modint inv(int64_t a){int64_t b = M, u = 1, v = 0;while(b){int64_t t = a / b;a -= t * b; std::swap(a, b);u -= t * v; std::swap(u, v);}u %= M;if(u < 0) u += M;return u;}constexpr static auto frac(int64_t a, int64_t b){return modint(a) / modint(b);}constexpr auto pow(int64_t p) const {return pow(val_, p);}constexpr auto inv() const {return inv(val_);}friend constexpr auto operator-(const modint &a){return modint(M - a.val_);}friend constexpr auto operator+(int64_t a, const modint &b){return modint(a) + b;}friend constexpr auto operator-(int64_t a, const modint &b){return modint(a) - b;}friend constexpr auto operator*(int64_t a, const modint &b){return modint(a) * b;}friend constexpr auto operator/(int64_t a, const modint &b){return modint(a) / b;}friend std::istream& operator>>(std::istream &s, modint &a){s >> a.val_; return s;}friend std::ostream& operator<<(std::ostream &s, const modint &a){s << a.val_; return s;}template <int N>static auto div(){static auto value = inv(N);return value;}explicit operator int32_t() const noexcept {return val_;}explicit operator int64_t() const noexcept {return val_;}};}#line 7 "/home/haar/Downloads/kyopro-lib/Mylib/Convolution/ntt_convolution.cpp"namespace haar_lib {template <typename T, int PRIM_ROOT, int MAX_SIZE>class number_theoretic_transform {public:using value_type = T;constexpr static int primitive_root = PRIM_ROOT;constexpr static int max_size = MAX_SIZE;private:const int MAX_POWER_;std::vector<T> BASE_, INV_BASE_;public:number_theoretic_transform():MAX_POWER_(__builtin_ctz(MAX_SIZE)),BASE_(MAX_POWER_ + 1),INV_BASE_(MAX_POWER_ + 1){static_assert((MAX_SIZE & (MAX_SIZE - 1)) == 0, "MAX_SIZE must be power of 2.");T t = T::pow(PRIM_ROOT, (T::mod() - 1) >> (MAX_POWER_ + 2));T s = t.inv();for(int i = MAX_POWER_; --i >= 0;){t *= t;s *= s;BASE_[i] = -t;INV_BASE_[i] = -s;}}void run(std::vector<T> &f, bool INVERSE = false) const {const int n = f.size();assert((n & (n - 1)) == 0 and n <= MAX_SIZE); // データ数は2の冪乗個if(INVERSE){for(int b = 1; b < n; b <<= 1){T w = 1;for(int j = 0, k = 1; j < n; j += 2 * b, ++k){for(int i = 0; i < b; ++i){const auto s = f[i + j];const auto t = f[i + j + b];f[i + j] = s + t;f[i + j + b] = (s - t) * w;}w *= INV_BASE_[__builtin_ctz(k)];}}const T t = T::inv(n);for(auto &x : f) x *= t;}else{for(int b = n >> 1; b; b >>= 1){T w = 1;for(int j = 0, k = 1; j < n; j += 2 * b, ++k){for(int i = 0; i < b; ++i){const auto s = f[i + j];const auto t = f[i + j + b] * w;f[i + j] = s + t;f[i + j + b] = s - t;}w *= BASE_[__builtin_ctz(k)];}}}}template <typename U>std::vector<T> convolve(std::vector<U> f, std::vector<U> g) const {const int m = f.size() + g.size() - 1;int n = 1;while(n < m) n *= 2;std::vector<T> f2(n), g2(n);for(int i = 0; i < (int)f.size(); ++i) f2[i] = (int64_t)f[i];for(int i = 0; i < (int)g.size(); ++i) g2[i] = (int64_t)g[i];run(f2);run(g2);for(int i = 0; i < n; ++i) f2[i] *= g2[i];run(f2, true);return f2;}template <typename U>std::vector<T> operator()(std::vector<U> f, std::vector<U> g) const {return convolve(f, g);}};template <typename T>std::vector<T> convolve_general_mod(std::vector<T> f, std::vector<T> g){static constexpr int M1 = 167772161, P1 = 3;static constexpr int M2 = 469762049, P2 = 3;static constexpr int M3 = 1224736769, P3 = 3;auto res1 = number_theoretic_transform<modint<M1>, P1, 1 << 20>().convolve(f, g);auto res2 = number_theoretic_transform<modint<M2>, P2, 1 << 20>().convolve(f, g);auto res3 = number_theoretic_transform<modint<M3>, P3, 1 << 20>().convolve(f, g);const int n = res1.size();std::vector<T> ret(n);const int64_t M12 = (int64_t)modint<M2>::inv(M1);const int64_t M13 = (int64_t)modint<M3>::inv(M1);const int64_t M23 = (int64_t)modint<M3>::inv(M2);for(int i = 0; i < n; ++i){const int64_t r[3] = {(int64_t)res1[i], (int64_t)res2[i], (int64_t)res3[i]};const int64_t t0 = r[0] % M1;const int64_t t1 = (r[1] - t0 + M2) * M12 % M2;const int64_t t2 = ((r[2] - t0 + M3) * M13 % M3 - t1 + M3) * M23 % M3;ret[i] = T(t0) + T(t1) * M1 + T(t2) * M1 * M2;}return ret;}}#line 4 "/home/haar/Downloads/kyopro-lib/Mylib/Math/formal_power_series.cpp"#include <initializer_list>#line 6 "/home/haar/Downloads/kyopro-lib/Mylib/Math/formal_power_series.cpp"namespace haar_lib {template <typename T, const auto &convolve>class formal_power_series {public:using value_type = T;private:std::vector<T> data_;public:formal_power_series(){}explicit formal_power_series(int N): data_(N){}formal_power_series(const std::vector<T> &data_): data_(data_){}formal_power_series(std::initializer_list<T> init): data_(init.begin(), init.end()){}formal_power_series(const formal_power_series &a): data_(a.data_){}formal_power_series(formal_power_series &&a) noexcept {*this = std::move(a);}size_t size() const {return data_.size();}const T& operator[](int i) const {return data_[i];}T& operator[](int i){return data_[i];}auto begin() {return data_.begin();}auto end() {return data_.end();}const auto& data() const {return data_;}void resize(int n){data_.resize(n);}auto& operator=(formal_power_series &&rhs) noexcept {if(this != &rhs){data_ = std::move(rhs.data_);}return *this;}auto& operator+=(const formal_power_series &rhs){if(data_.size() < rhs.size()) data_.resize(rhs.size());for(int i = 0; i < rhs.size(); ++i) data_[i] += rhs[i];return *this;}auto& operator+=(T rhs){data_[0] += rhs;return *this;}auto operator+(T rhs) const {auto ret = *this;return ret += rhs;}auto operator+(const formal_power_series &rhs) const {auto ret = *this;return ret += rhs;}auto& operator-=(const formal_power_series &rhs){if(data_.size() < rhs.size()) data_.resize(rhs.size());for(int i = 0; i < rhs.size(); ++i) data_[i] -= rhs[i];return *this;}auto& operator-=(T rhs){data_[0] -= rhs;return *this;}auto operator-(T rhs) const {auto ret = *this;return ret -= rhs;}auto operator-(const formal_power_series &rhs) const {auto ret = *this;return ret -= rhs;}auto operator-() const {auto ret = *this;for(auto &x : ret) x = -x;return ret;}auto& operator*=(const formal_power_series &rhs){data_ = convolve(data_, rhs.data_);return *this;}auto operator*(const formal_power_series &rhs) const {auto ret = convolve(data_, rhs.data_);return formal_power_series(ret);}auto& operator*=(T rhs){for(auto &x : data_) x *= rhs;return *this;}auto operator*(T rhs) const {auto ret = *this;return ret *= rhs;}auto differentiate() const {const int n = data_.size();std::vector<T> ret(n - 1);for(int i = 0; i < n - 1; ++i){ret[i] = data_[i + 1] * (i + 1);}return formal_power_series(ret);}auto integrate() const {const int n = data_.size();std::vector<T> ret(n + 1);for(int i = 0; i < n; ++i){ret[i + 1] = data_[i] / (i + 1);}return formal_power_series(ret);}auto inv() const {assert(data_[0] != 0);const int n = data_.size();int t = 1;std::vector<T> ret = {data_[0].inv()};ret.reserve(n * 2);while(t <= n * 2){std::vector<T> c(data_.begin(), data_.begin() + std::min(t, n));c = convolve(c, convolve(ret, ret));c.resize(t);ret.resize(t);for(int i = 0; i < t; ++i){ret[i] = ret[i] * 2 - c[i];}t <<= 1;}ret.resize(n);return formal_power_series(ret);}auto log() const {assert(data_[0] == 1);const int n = data_.size();auto ret = (differentiate() * inv()).integrate();ret.resize(n);return ret;}auto exp() const {const int n = data_.size();int t = 1;formal_power_series b({1});while(t <= n * 2){t <<= 1;auto temp = b.log();temp.resize(t);for(int i = 0; i < t; ++i) temp[i] = -temp[i];temp[0] += 1;for(int i = 0; i < std::min(t, n); ++i) temp[i] += data_[i];b = b * temp;b.resize(t);}b.resize(n);return b;}auto shift(int64_t k) const {const int64_t n = data_.size();formal_power_series ret(n);if(k >= 0){for(int64_t i = k; i < n; ++i){ret[i] = data_[i - k];}}else{for(int64_t i = 0; i < n + k; ++i){ret[i] = data_[i - k];}}return ret;}auto pow(int64_t M) const {assert(M >= 0);const int n = data_.size();int k = 0;for(; k < n; ++k){if(data_[k] != 0){break;}}if(k >= n) return *this;T a = data_[k];formal_power_series ret = *this;ret = (ret.shift(-k)) * a.inv();ret = (ret.log() * (T)M).exp();ret = (ret * a.pow(M)).shift(M * k);return ret;}std::optional<formal_power_series> sqrt() const;};}#line 3 "/home/haar/Downloads/kyopro-lib/Mylib/Number/Mod/mod_pow.cpp"namespace haar_lib {constexpr int64_t mod_pow(int64_t n, int64_t p, int64_t m){int64_t ret = 1;while(p > 0){if(p & 1) (ret *= n) %= m;(n *= n) %= m;p >>= 1;}return ret;}}#line 3 "/home/haar/Downloads/kyopro-lib/Mylib/Number/Prime/primitive_root.cpp"namespace haar_lib {constexpr int primitive_root(int p){int pf[30] = {};int k = 0;{int n = p - 1;for(int64_t i = 2; i * i <= p; ++i){if(n % i == 0){pf[k++] = i;while(n % i == 0) n /= i;}}if(n != 1)pf[k++] = n;}for(int g = 2; g <= p; ++g){bool ok = true;for(int i = 0; i < k; ++i){if(mod_pow(g, (p - 1) / pf[i], p) == 1){ok = false;break;}}if(not ok) continue;return g;}return -1;}}#line 5 "/home/haar/Downloads/kyopro-lib/Mylib/IO/join.cpp"namespace haar_lib {template <typename Iter>std::string join(Iter first, Iter last, std::string delim = " "){std::stringstream s;for(auto it = first; it != last; ++it){if(it != first) s << delim;s << *it;}return s.str();}}#line 70 "main.cpp"namespace haar_lib {}namespace solver {using namespace haar_lib;constexpr int m1000000007 = 1000000007;constexpr int m998244353 = 998244353;void init(){std::cin.tie(0);std::ios::sync_with_stdio(false);std::cout << std::fixed << std::setprecision(12);std::cerr << std::fixed << std::setprecision(12);std::cin.exceptions(std::ios_base::failbit);}using mint = modint<m998244353>;constexpr int prim_root = primitive_root(m998244353);const static auto ntt = number_theoretic_transform<mint, prim_root, 1 << 21>();using FPS = formal_power_series<mint, ntt>;void solve(){int N, Q; std::cin >> N >> Q;std::vector<int> a(N); std::cin >> a;std::vector<int> r(Q); std::cin >> r;std::vector<mint> s(N);for(int x : r){s[N - 1 - x] += 1;}std::vector<mint> t(a.begin(), a.end());t.insert(t.end(), a.begin(), a.end());auto res = FPS(s) * FPS(t);dump(res.data());std::cout << join(res.begin() + N - 1, res.begin() + (2 * N - 1)) << "\n";}}int main(){solver::init();while(true){try{solver::solve();std::cout << std::flush;std::cerr << std::flush;}catch(const std::istream::failure &e){break;}catch(...){break;}}return 0;}