結果
| 問題 |
No.1307 Rotate and Accumulate
|
| コンテスト | |
| ユーザー |
tran0826
|
| 提出日時 | 2020-12-04 13:51:29 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 123 ms / 5,000 ms |
| コード長 | 17,968 bytes |
| コンパイル時間 | 2,410 ms |
| コンパイル使用メモリ | 154,996 KB |
| 最終ジャッジ日時 | 2025-01-16 15:43:49 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 |
ソースコード
#include<iostream>
#include<vector>
#include<set>
#include<queue>
#include<map>
#include<algorithm>
#include<cstring>
#include<string>
#include<cassert>
#include<cmath>
#include<climits>
#include<iomanip>
#include<stack>
#include<unordered_map>
#include<bitset>
#include<limits>
#include<complex>
#include<array>
#include<numeric>
#include<functional>
using namespace std;
#define ll long long
#define ull unsigned long long
#define rrep(i,m,n) for(ll (i)=(ll)(m);(i)>=(ll)(n);(i)--)
#define rep(i,m,n) for(ll (i)=(ll)(m);i<(ll)(n);i++)
#define REP(i,n) rep(i,0,n)
#define FOR(i,c) for(decltype((c).begin())i=(c).begin();i!=(c).end();++i)
#define all(hoge) (hoge).begin(),(hoge).end()
typedef pair<ll, ll> P;
constexpr long double m_pi = 3.1415926535897932L;
constexpr ll MOD = 1000000007;
constexpr ll INF = 1LL << 61;
constexpr long double EPS = 1e-10;
template<typename T> using vector2 = vector<vector<T>>;
template<typename T> using vector3 = vector<vector2<T>>;
typedef vector<ll> Array;
typedef vector<Array> Matrix;
string operator*(const string& s, int k) {
if (k == 0) return "";
string p = (s + s) * (k / 2);
if (k % 2 == 1) p += s;
return p;
}
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
struct Edge {//グラフ
int to, rev; ll cap;
Edge(int _to, ll _cap, int _rev) {
to = _to; cap = _cap; rev = _rev;
}
};
typedef vector<Edge> Edges;
typedef vector<Edges> Graph;
void add_edge(Graph& G, int from, int to, ll cap, bool revFlag, ll revCap) {//最大フロー求める Ford-fulkerson
G[from].push_back(Edge(to, cap, (ll)G[to].size() + (from == to)));
if (revFlag)G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));//最小カットの場合逆辺は0にする
}
ll max_flow_dfs(Graph& G, ll v, ll t, ll f, vector<bool>& used)
{
if (v == t)
return f;
used[v] = true;
for (int i = 0; i < G[v].size(); ++i) {
Edge& e = G[v][i];
if (!used[e.to] && e.cap > 0) {
ll d = max_flow_dfs(G, e.to, t, min(f, e.cap), used);
if (d > 0) {
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
//二分グラフの最大マッチングを求めたりも出来る また二部グラフの最大独立集合は頂点数-最大マッチングのサイズ
ll max_flow(Graph& G, ll s, ll t)//O(V(V+E))
{
ll flow = 0;
for (;;) {
vector<bool> used(G.size());
REP(i, used.size())used[i] = false;
ll f = max_flow_dfs(G, s, t, INF, used);
if (f == 0) {
return flow;
}
flow += f;
}
}
void BellmanFord(Graph& G, ll s, Array& d, Array& negative) {//O(|E||V|)
d.resize(G.size());
negative.resize(G.size());
REP(i, d.size())d[i] = INF;
REP(i, d.size())negative[i] = false;
d[s] = 0;
REP(k, G.size() - 1) {
REP(i, G.size()) {
REP(j, G[i].size()) {
if (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {
d[G[i][j].to] = d[i] + G[i][j].cap;
}
}
}
}
REP(k, G.size() - 1) {
REP(i, G.size()) {
REP(j, G[i].size()) {
if (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {
d[G[i][j].to] = d[i] + G[i][j].cap;
negative[G[i][j].to] = true;
}
if (negative[i] == true)negative[G[i][j].to] = true;
}
}
}
}
void Dijkstra(Graph& G, ll s, Array& d) {//O(|E|log|V|)
d.resize(G.size());
REP(i, d.size())d[i] = INF;
d[s] = 0;
priority_queue<P, vector<P>, greater<P>> q;
q.push(make_pair(0, s));
while (!q.empty()) {
P a = q.top();
q.pop();
if (d[a.second] < a.first)continue;
REP(i, G[a.second].size()) {
Edge e = G[a.second][i];
if (d[e.to] > d[a.second] + e.cap) {
d[e.to] = d[a.second] + e.cap;
q.push(make_pair(d[e.to], e.to));
}
}
}
}
void WarshallFloyd(Graph& G, Matrix& d) {//O(V^3)
d.resize(G.size());
REP(i, d.size())d[i].resize(G.size());
REP(i, d.size()) {
REP(j, d[i].size()) {
d[i][j] = ((i != j) ? INF : 0);
}
}
REP(i, G.size()) {
REP(j, G[i].size()) {
chmin(d[i][G[i][j].to], G[i][j].cap);
}
}
REP(i, G.size()) {
REP(j, G.size()) {
REP(k, G.size()) {
chmin(d[j][k], d[j][i] + d[i][k]);
}
}
}
}
bool tsort(Graph& graph, Array& order) {//トポロジカルソートO(E+V)
int n = graph.size(), k = 0;
Array in(n);
for (auto& es : graph)
for (auto& e : es)in[e.to]++;
priority_queue<ll, Array, greater<ll>> que;
REP(i, n)
if (in[i] == 0)que.push(i);
while (que.size()) {
int v = que.top();
que.pop();
order.push_back(v);
for (auto& e : graph[v])
if (--in[e.to] == 0)que.push(e.to);
}
if (order.size() != n)return false;
else return true;
}
class Lca {
public:
const int n = 0;
const int log2_n = 0;
std::vector<std::vector<int>> parent;
std::vector<int> depth;
Lca() {}
Lca(const Graph& g, int root)
: n(g.size()), log2_n(log2(n) + 1), parent(log2_n, std::vector<int>(n)), depth(n) {
dfs(g, root, -1, 0);
for (int k = 0; k + 1 < log2_n; k++) {
for (int v = 0; v < (int)g.size(); v++) {
if (parent[k][v] < 0)
parent[k + 1][v] = -1;
else
parent[k + 1][v] = parent[k][parent[k][v]];
}
}
}
void dfs(const Graph& g, int v, int p, int d) {
parent[0][v] = p;
depth[v] = d;
for (auto& e : g[v]) {
if (e.to != p) dfs(g, e.to, v, d + 1);
}
}
int get(int u, int v) {
if (depth[u] > depth[v]) std::swap(u, v);
for (int k = 0; k < log2_n; k++) {
if ((depth[v] - depth[u]) >> k & 1) {
v = parent[k][v];
}
}
if (u == v) return u;
for (int k = log2_n - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
};
class UnionFind {
vector<int> data;
ll _num;
public:
UnionFind(int size) : data(size, -1), _num(size) { }
bool merge(int x, int y) {//xとyの集合を統合する
x = root(x); y = root(y);
if (x != y) {
if (data[y] < data[x]) swap(x, y);
data[x] += data[y]; data[y] = x;
}
_num -= (x != y);
return x != y;
}
bool same(int x, int y) {//xとyが同じ集合か返す
return root(x) == root(y);
}
int root(int x) {//xのルートを返す
return data[x] < 0 ? x : data[x] = root(data[x]);
}
ll size(int x) {//xの集合のサイズを返す
return -data[root(x)];
}
ll num() {//集合の数を返す
return _num;
}
};
template<typename T, typename F>
class SegmentTree {
private:
T identity;
F merge;
ll n;
vector<T> dat;
public:
SegmentTree(F f, T id, vector<T> v) :merge(f), identity(id) {
int _n = v.size();
n = 1;
while (n < _n)n *= 2;
dat.resize(2 * n - 1, identity);
REP(i, _n)dat[n + i - 1] = v[i];
for (int i = n - 2; i >= 0; i--)dat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);
}
SegmentTree(F f, T id, int _n) :merge(f), identity(id) {
n = 1;
while (n < _n)n *= 2;
dat.resize(2 * n - 1, identity);
}
void set_val(int i, T x) {
i += n - 1;
dat[i] = x;
while (i > 0) {
i = (i - 1) / 2;
dat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);
}
}
T query(int l, int r) {
T left = identity, right = identity;
l += n - 1; r += n - 1;
while (l < r) {
if ((l & 1) == 0)left = merge(left, dat[l]);
if ((r & 1) == 0)right = merge(dat[r - 1], right);
l = l / 2;
r = (r - 1) / 2;
}
return merge(left, right);
}
};
template< typename T >
class FenwickTree {
vector< T > data;
int n;
int p;
public:
FenwickTree(int n) :n(n) {
data.resize(n + 1LL, 0);
p = 1;
while (p < data.size())p *= 2;
}
T sum(int k) {
T ret = 0;
for (; k > 0; k -= k & -k) ret += data[k];
return (ret);
}
T sum(int a, int b) { return sum(b) - sum(a); }//[a,b)
void add(int k, T x) {
for (++k; k <= n; k += k & -k) data[k] += x;
}
int lower_bound(ll w) {
if (w <= 0)return -1;
int x = 0;
for (int k = p / 2; k > 0; k /= 2) {
if (x + k <= n && data[x + k] < w)w -= data[x + k], x += k;
}
return x;
}
};
//約数求める //約数
void divisor(ll n, vector<ll>& ret) {
for (ll i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(ret.begin(), ret.end());
}
void prime_factorization(ll n, vector<P>& ret) {
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back({ i,0 });
while (n % i == 0) {
n /= i;
ret[ret.size() - 1].second++;
}
}
}
if (n != 1)ret.push_back({ n,1 });
}
inline ll mod_pow(ll x, ll n, ll mod) {
ll res = 1;
while (n > 0) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
inline ll mod_inv(ll x, ll mod) {
return mod_pow(x, mod - 2, mod);
}
class Combination {
public:
Array fact;
Array fact_inv;
ll mod;
//if n >= mod use lucas
ll nCr(ll n, ll r) {
if (n < r)return 0;
if (n < mod)return ((fact[n] * fact_inv[r] % mod) * fact_inv[n - r]) % mod;
ll ret = 1;
while (n || r) {
ll _n = n % mod, _r = r % mod;
n /= mod; r /= mod;
(ret *= nCr(_n, _r)) %= mod;
}
return ret;
}
ll nPr(ll n, ll r) {
return (fact[n] * fact_inv[n - r]) % mod;
}
ll nHr(ll n, ll r) {
return nCr(r + n - 1, r);
}
Combination(ll _n, ll _mod) {
mod = _mod;
ll n = min(_n + 1, mod);
fact.resize(n);
fact[0] = 1;
REP(i, n - 1) {
fact[i + 1] = (fact[i] * (i + 1LL)) % mod;
}
fact_inv.resize(n);
fact_inv[n - 1] = mod_inv(fact[n - 1], mod);
for (int i = n - 1; i > 0; i--) {
fact_inv[i - 1] = fact_inv[i] * i % mod;
}
}
};
ll popcount(ll x) {
x = (x & 0x5555555555555555) + (x >> 1 & 0x5555555555555555);
x = (x & 0x3333333333333333) + (x >> 2 & 0x3333333333333333);
x = (x & 0x0F0F0F0F0F0F0F0F) + (x >> 4 & 0x0F0F0F0F0F0F0F0F);
x = (x & 0x00FF00FF00FF00FF) + (x >> 8 & 0x00FF00FF00FF00FF);
x = (x & 0x0000FFFF0000FFFF) + (x >> 16 & 0x0000FFFF0000FFFF);
x = (x & 0x00000000FFFFFFFF) + (x >> 32 & 0x00000000FFFFFFFF);
return x;
}
template<typename T, typename E, typename F, typename G, typename H, typename P>
class LazySegmentTree {
private:
const T identity_t;
const E identity_e;
F f_tt;
G f_te;
H f_ee;
P f_ep;//区間に比例する場合
vector<T> dat;
vector<E> lazy;
int n;
void eval(int k, int len) {
if (lazy[k] == identity_e)return;
if (k < n - 1) {
lazy[2 * k + 1] = f_ee(lazy[2 * k + 1], lazy[k]);
lazy[2 * k + 2] = f_ee(lazy[2 * k + 2], lazy[k]);
}
dat[k] = f_te(dat[k], f_ep(lazy[k], len));
lazy[k] = identity_e;
}
void update(int a, int b, E x, int k, int l, int r) {
eval(k, r - l);
if (a <= l && r <= b) {
lazy[k] = f_ee(lazy[k], x);
eval(k, r - l);
}
else if (a < r && l < b) {
update(a, b, x, k * 2 + 1, l, (l + r) / 2);
update(a, b, x, k * 2 + 2, (l + r) / 2, r);
dat[k] = f_tt(dat[2 * k + 1], dat[2 * k + 2]);
}
}
T query(int a, int b, int k, int l, int r) {
eval(k, r - l);
if (r <= a || b <= l)return identity_t;
else if (a <= l && r <= b)return dat[k];
else {
T vl = query(a, b, 2 * k + 1, l, (l + r) / 2);
T vr = query(a, b, 2 * k + 2, (l + r) / 2, r);
return f_tt(vl, vr);
}
}
public:
LazySegmentTree(vector<T> v, T id_t, E id_e, F f, G g, H h, P p) :
identity_t(id_t), identity_e(id_e), f_tt(f), f_te(g), f_ee(h), f_ep(p) {
n = 1;
while (n < v.size())n *= 2;
dat.resize(2 * n - 1, identity_t);
lazy.resize(2 * n - 1, identity_e);
REP(i, v.size())dat[n + i - 1] = v[i];
for (int i = n - 2; i >= 0; i--)dat[i] = f_tt(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void update(int a, int b, E x) { update(a, b, x, 0, 0, n); }
T query(int a, int b) { return query(a, b, 0, 0, n); }
};
Matrix mIdentity(ll n) {
Matrix A(n, Array(n));
for (int i = 0; i < n; ++i) A[i][i] = 1;
return A;
}
Matrix mMul(const Matrix& A, const Matrix& B,ll M) {
Matrix C(A.size(), Array(B[0].size()));
for (int i = 0; i < C.size(); ++i)
for (int k = 0; k < A[i].size(); ++k)
for (int j = 0; j < C[i].size(); ++j)
(C[i][j] += (A[i][k] % M) * (B[k][j] % M)) %= M;
return C;
}
// O( n^3 log e )
Matrix mPow(const Matrix& A, ll e , ll M) {
return e == 0 ? mIdentity(A.size()) :
e % 2 == 0 ? mPow(mMul(A, A, M), e / 2, M) : mMul(A, mPow(A, e - 1, M), M);
}
template<ll mod, ll root>//特殊な素数と原始根 998244353のとき3
class NTT {
private:
template<typename T>
inline void bit_reverse(vector<T>& a) {
int n = a.size();
int i = 0;
for (int j = 1; j < n - 1; ++j) {
for (int k = n >> 1; k > (i ^= k); k >>= 1);
if (j < i) swap(a[i], a[j]);
}
}
void _ntt(vector<long long>& a, int sign) {
const int n = a.size();
assert((n ^ (n & -n)) == 0); //n = 2^k
long long tmp = (mod - 1) * mod_pow((ll)n, mod - 2, mod) % mod; // -1/n
long long h = mod_pow(root, tmp, mod); // ^n√g
if (sign == -1) h = mod_pow(h, mod - 2, mod);
bit_reverse(a);
for (ll m = 1; m < n; m <<= 1) {
const ll m2 = 2 * m;
long long _base = mod_pow((ll)h, (ll)(n / m2), mod);
long long _w = 1;
for (int x = 0; x < m; ++x) {
for (ll s = x; s < n; s += m2) {
long long u = a[s];
long long d = (a[s + m] * _w) % mod;
a[s] = (u + d) % mod;
a[s + m] = (u - d + mod) % mod;
}
_w = (_w * _base) % mod;
}
}
}
void ntt(vector<long long>& input) { _ntt(input, 1); }
void intt(vector<long long>& input) {
_ntt(input, -1);
const long long n_inv = mod_pow((ll)input.size(), mod - 2, mod);
for (auto& x : input) x = (x * n_inv) % mod;
}
public:
// 畳み込み演算を行う
vector<long long> convolution(const vector<long long>& a, const vector<long long>& b) {
int result_size = a.size() + b.size() - 1;
int n = 1; while (n < result_size) n <<= 1;
vector<long long> _a = a, _b = b;
_a.resize(n, 0);
_b.resize(n, 0);
ntt(_a);
ntt(_b);
for (int i = 0; i < n; ++i) _a[i] = (_a[i] * _b[i]) % mod;
intt(_a);
_a.resize(result_size);
return _a;
}
};
class StronglyConnectedComponents {
private:
int n;
Graph& g;
void visit(int v, stack<int>& S, vector<int>& inS, vector<int>& low, vector<int>& num, int& time) {
low[v] = num[v] = ++time;
S.push(v); inS[v] = true;
for (auto e : g[v]) {
int w = e.to;
if (num[w] == 0) {
visit(w, S, inS, low, num, time);
low[v] = min(low[v], low[w]);
}
else if (inS[w])
low[v] = min(low[v], num[w]);
}
if (low[v] == num[v]) {
scc.push_back(vector<int>());
while (1) {
int w = S.top(); S.pop(); inS[w] = false;
scc.back().push_back(w);
comp[w] = scc.size() - 1;
if (v == w) break;
}
}
}
public:
vector2<int> scc;
vector<int> comp;
StronglyConnectedComponents(Graph& _g) :g(_g) {
n = g.size();
comp.resize(n);
vector<int> num(n), low(n);
stack<int> S;
vector<int> inS(n);
int time = 0;
REP(u, n)if (num[u] == 0)visit(u, S, inS, low, num, time);
}
void build(Graph& t) {
t.resize(scc.size());
map<pair<int, int>, int> mp;
REP(i, n) {
int u = comp[i];
for (auto e : g[i]) {
int v = comp[e.to];
if (u != v && mp.count({ u,v }) == 0)add_edge(t, u, v, 1, false, 0), mp[{u, v}] = 1;
}
}
}
};
class HeavyLightDecomposition {
private:
Graph& g;
int n, root;
vector<int> sz, par, in, out, head, rev, dep;
void dfs_sz(int v, int p) {
sz[v] = 1, par[v] = p;
for (auto& e : g[v]) {
if (e.to == p)swap(e, g[v].back());
if (e.to == p)continue;
dep[e.to] = dep[v] + 1;
dfs_sz(e.to, v);
sz[v] += sz[e.to];
if (sz[e.to] > sz[g[v][0].to])swap(e, g[v][0]);
}
}
void dfs_hld(int v, int p, int& t) {
in[v] = t++; rev[in[v]] = v;
for (auto e : g[v]) {
if (e.to == p)continue;
head[e.to] = (e.to == g[v][0].to ? head[v] : e.to);
dfs_hld(e.to, v, t);
}
out[v] = t;
}
public:
HeavyLightDecomposition(Graph& _g, int _root = 0)
:g(_g), n(g.size()), root(_root), sz(n), par(n, -1), head(n, -1), in(n), out(n), rev(n), dep(n, 0) {
dfs_sz(root, -1);
int t = 0;
head[root] = root;
dfs_hld(root, -1, t);
}
inline int get_in(int a) { return in[a]; }
inline int get_sz(int a) { return sz[a]; }
inline int get_rev(int a) { return rev[a]; }
inline int get_dep(int a) { return dep[a]; }
int lca(int a, int b) {
for (;; b = par[head[b]]) {
if (in[a] > in[b])swap(a, b);
if (head[a] == head[b])return a;
}
}
P subtree_query(int a) { return { in[a], out[a] }; }
vector<P> path_query(int a, int b, bool edge = false) {
vector<P> ret;
for (;; b = par[head[b]]) {
if (in[a] > in[b])swap(a, b);
if (head[a] == head[b])break;
ret.push_back({ in[head[b]],in[b] + 1 });
}
ret.push_back({ in[a] + edge,in[b] + 1 });
return ret;
}
};
template<typename E, typename H >
class DuelSegmentTree {
private:
int sz, height;
vector<E> lazy;
const E identity_e;
H f_ee;
inline void propagate(int k) {
if (lazy[k] != identity_e) {
lazy[2 * k + 0] = f_ee(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = f_ee(lazy[2 * k + 1], lazy[k]);
lazy[k] = identity_e;
}
}
inline void thrust(int k) {
for (int i = height; i > 0; i--) propagate(k >> i);
}
public:
DuelSegmentTree(int n, E id_e, H h) :
identity_e(id_e), f_ee(h) {
sz = 1;
height = 0;
while (sz < n) sz <<= 1, height++;
lazy.resize(2 * sz, identity_e);
}
void update(int a, int b, const E& x) {
thrust(a += sz);
thrust(b += sz - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) lazy[l] = f_ee(lazy[l], x), ++l;
if (r & 1) --r, lazy[r] = f_ee(lazy[r], x);
}
}
E operator[](int k) {
thrust(k += sz);
return lazy[k];
}
};
template<typename T>
void rowReduction(vector<T> mat, vector<T>& basis) {//掃き出し法
for (auto e : mat) {
for (auto b : basis)
chmin(e, e ^ b);
if (e)
basis.push_back(e);
}
sort(all(basis), greater<T>());
}
constexpr ll mod = 998244353;
int main() {
ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
ll n, q;
cin >> n >> q;
Array a(n), b(n, 0);
REP(i, n)cin >> a[i];
reverse(all(a));
REP(i, q) {
ll r;
cin >> r;
b[r]++;
}
NTT<mod, 3> ntt;
auto c = ntt.convolution(a, b);
for (int i = n - 1; i >= 0; i--) {
ll ans = 0;
for (int j = i; j < c.size(); j += n)ans += c[j];
cout << ans << (i == 0 ? "\n" : " ");
}
return 0;
}
tran0826