結果

問題 No.1307 Rotate and Accumulate
ユーザー tokusakuraitokusakurai
提出日時 2020-12-05 09:55:39
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 63 ms / 5,000 ms
コード長 4,877 bytes
コンパイル時間 2,274 ms
コンパイル使用メモリ 210,468 KB
実行使用メモリ 6,660 KB
最終ジャッジ日時 2024-09-15 16:44:13
合計ジャッジ時間 4,973 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 44 ms
6,284 KB
testcase_09 AC 47 ms
6,188 KB
testcase_10 AC 36 ms
5,376 KB
testcase_11 AC 27 ms
5,376 KB
testcase_12 AC 35 ms
5,376 KB
testcase_13 AC 11 ms
5,376 KB
testcase_14 AC 19 ms
5,376 KB
testcase_15 AC 62 ms
6,532 KB
testcase_16 AC 63 ms
6,404 KB
testcase_17 AC 62 ms
6,528 KB
testcase_18 AC 56 ms
6,660 KB
testcase_19 AC 62 ms
6,400 KB
testcase_20 AC 62 ms
6,528 KB
testcase_21 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define each(e, v) for(auto &e: v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};

struct io_setup{
    io_setup(){
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

template<int mod>
struct Mod_Int{
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    Mod_Int &operator += (const Mod_Int &p){
        if((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator -= (const Mod_Int &p){
        if((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator *= (const Mod_Int &p){
        x = (int) (1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator /= (const Mod_Int &p){
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator ++ () {return *this += Mod_Int(1);}

    Mod_Int operator ++ (int){
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator -- () {return *this -= Mod_Int(1);}

    Mod_Int operator -- (int){
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator - () const {return Mod_Int(-x);}

    Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;}

    Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;}

    Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;}

    Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;}

    bool operator == (const Mod_Int &p) const {return x == p.x;}

    bool operator != (const Mod_Int &p) const {return x != p.x;}

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod-2);
    }

    Mod_Int pow(ll k) const{
        Mod_Int now = *this, ret = 1;
        for(; k; k >>= 1, now *= now){
            if(k&1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator << (ostream &os, const Mod_Int &p){
        return os << p.x;
    }

    friend istream &operator >> (istream &is, Mod_Int &p){
        ll a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<998244353>;

template<int mod, int primitive_root>
struct Number_Theorem_Transform{
    using T = Mod_Int<mod>;
    vector<T> r, ir;

    Number_Theorem_Transform(){
        r.resize(30), ir.resize(30);
        rep(i, 30){
            r[i] = -T(primitive_root).pow((mod-1)>>(i+2));
            ir[i] = r[i].inverse();
        }
    }

    void ntt(vector<T> &a, int n) const{
        assert((n&(n-1)) == 0);
        a.resize(n);
        for(int k = n; k >>= 1;){
            T w = 1;
            for(int s = 0, t = 0; s < n; s += 2*k){
                for(int i = s, j = s+k; i < s+k; i++, j++){
                    T x = a[i], y = w*a[j];
                    a[i] = x+y, a[j] = x-y;
                }
                w *= r[__builtin_ctz(++t)];
            }
        }
    }

    void intt(vector<T> &a, int n) const{
        assert((n&(n-1)) == 0);
        a.resize(n);
        for(int k = 1; k < n; k <<= 1){
            T w = 1;
            for(int s = 0, t = 0; s < n; s += 2*k){
                for(int i = s, j = s+k; i < s+k; i++, j++){
                    T x = a[i], y = a[j];
                    a[i] = x+y, a[j] = w*(x-y);
                }
                w *= ir[__builtin_ctz(++t)];
            }
        }
        T inv = T(n).inverse();
        for(auto &e: a) e *= inv;
    }

    vector<T> convolve(vector<T> a, vector<T> b) const{
        int k = sz(a)+sz(b)-1, n = 1;
        while(n < k) n <<= 1;
        ntt(a, n), ntt(b, n);
        rep(i, n) a[i] *= b[i];
        intt(a, n), a.resize(k);
        return a;
    }
};

Number_Theorem_Transform<998244353, 3> NTT;

int main(){
    int N, Q;
    cin >> N >> Q;
    vector<mint> a(N);
    rep(i, N) cin >> a[i];
    vector<mint> b(N, 0);
    rep(i, Q){
        int r; cin >> r;
        b[(N-r)%N]++;
    }

    vector<mint> c = NTT.convolve(a, b);
    vector<mint> ans(N, 0);
    rep(i, 2*N-1){
        ans[i%N] += c[i];
    }
    rep(i, N) cout << ans[i] << ' ';
    cout << '\n';
}
0