結果

問題 No.1304 あなたは基本が何か知っていますか?私は知っています.
ユーザー hedwig100hedwig100
提出日時 2020-12-05 18:34:47
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 27 ms / 2,000 ms
コード長 3,977 bytes
コンパイル時間 2,152 ms
コンパイル使用メモリ 178,888 KB
実行使用メモリ 26,528 KB
最終ジャッジ日時 2024-06-12 15:31:27
合計ジャッジ時間 44,699 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 45 RE * 10 TLE * 9 MLE * 10
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL_
void debug_out() {cerr << endl;}
template<typename Head,typename... Tail> void debug_out(Head H,Tail... T){cerr << ' ' << H; debug_out(T...);}
#define debug(...) cerr << 'L' << __LINE__ << " [" << #__VA_ARGS__ << "]:",debug_out(__VA_ARGS__)
#define dump(x) cerr << 'L' << __LINE__ << " " << #x << " = " << (x) << endl;
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
#define rep(i,n) for (int i = 0; i < (int)(n); i ++)
#define irep(i,n) for (int i = (int)(n) - 1;i >= 0;--i)
using ll = long long;
using PL = pair<ll,ll>;
using P = pair<int,int>;
constexpr int INF = 1000000000;
constexpr long long HINF = 100000'00000'00000;
constexpr long long MOD = 1000000007;// = 998244353;
constexpr double EPS = 1e-4;
constexpr double PI = 3.14159265358979;

#pragma region Macros
template<typename T1,typename T2> ostream &operator<<(ostream &os,const pair<T1,T2> &p) {
    os << '(' << p.first << ',' << p.second << ')'; return os;
}
template<typename T> ostream &operator<<(ostream &os,const vector<T> &v) {
    os << '[';
    for (auto &e:v) {os << e << ',';}
    os << ']'; return os;
}
// grid searh
const int dy[8] = {-1,0,1,0,-1,-1,1,1};
const int dx[8] = {0,1,0,-1,-1,1,-1,1};
bool IN(int y,int x,int H,int W) {return (0 <= y)&&(y < H)&&(0 <= x)&&(x < W);}
//integer
template<class T> T gcd(T a,T b) {return (b ? gcd(b,a%b): a);}
#pragma endregion


template<int Modulus> 
struct ModInt {
    long long x;
    ModInt(long long x = 0) :x((x%Modulus + Modulus)%Modulus) {}
    constexpr ModInt &operator+=(const ModInt a) {if ((x += a.x) >= Modulus) x -= Modulus; return *this;}
    constexpr ModInt &operator-=(const ModInt a) {if ((x += Modulus - a.x) >= Modulus) x -= Modulus; return *this;}
    constexpr ModInt &operator*=(const ModInt a) {(x *= a.x) %= Modulus; return *this;}
    constexpr ModInt &operator/=(const ModInt a) {return *this *= a.inverse();}

    constexpr ModInt operator+(const ModInt a) const {return ModInt(*this) += a.x;}
    constexpr ModInt operator-(const ModInt a) const {return ModInt(*this) -= a.x;}
    constexpr ModInt operator*(const ModInt a) const {return ModInt(*this) *= a.x;}
    constexpr ModInt operator/(const ModInt a) const {return ModInt(*this) /= a.x;}
    
    friend constexpr ostream& operator<<(ostream& os,const ModInt<Modulus>& a) {return os << a.x;}
    friend constexpr istream& operator>>(istream& is,ModInt<Modulus>& a) {return is >> a.x;}
    
    ModInt inverse() const {// x ^ (-1) 
        long long a = x,b = Modulus,p = 1,q = 0;
        while (b) {long long d = a/b; a -= d*b; swap(a,b); p -= d*q; swap(p,q);}
        return ModInt(p);
    }
    ModInt pow(long long N) {// x ^ N 
        ModInt a = 1;
        while (N) {
            if (N&1) a *= *this;
            *this *= *this;
            N >>= 1;
        }
        return a;
    }
};

using mint = ModInt<998244353>;


int main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(20);

    int N,K;
    ll X,Y; cin >> N >> K >> X >> Y;
    vector<int> A(K);
    rep(i,K) cin >> A[i];
    sort(A.begin(),A.end());
    A.erase(unique(A.begin(),A.end()),A.end());

    K = A.size();
    int bitsize = (1<<10);
    vector<vector<mint>> dp(K,vector<mint>(bitsize,0));
    rep(i,K) dp[i][A[i]] = 1;
    rep(i,N-1) {
        vector<mint> cumsum(bitsize,0);
        for (int x = 0;x < bitsize;++x) {
            for (int k = 0; k < K;++k) {
                cumsum[x] += dp[k][x];
            }
        }
        vector<vector<mint>> ndp(K,vector<mint>(bitsize,0));
        for (int j = 0;j < K;++j) {
            for (int x = 0;x < bitsize;++x) {
                ndp[j][x] = cumsum[A[j]^x] - dp[j][x^A[j]];
            }
        }
        swap(dp,ndp);
    }
    mint ans = 0;
    for (ll i = X;i <= Y;++i) {
        if (i < 0 || i >= bitsize) break;
        rep(j,K) ans += dp[j][i];
    }
    debug(dp);
    cout << ans << '\n';
    return 0;
}
0