結果
問題 | No.1300 Sum of Inversions |
ユーザー | koba-e964 |
提出日時 | 2020-12-07 17:45:38 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 265 ms / 2,000 ms |
コード長 | 9,183 bytes |
コンパイル時間 | 11,838 ms |
コンパイル使用メモリ | 384,632 KB |
実行使用メモリ | 19,568 KB |
最終ジャッジ日時 | 2024-09-17 13:59:02 |
合計ジャッジ時間 | 19,591 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 234 ms
17,368 KB |
testcase_04 | AC | 190 ms
17,224 KB |
testcase_05 | AC | 154 ms
11,864 KB |
testcase_06 | AC | 227 ms
18,200 KB |
testcase_07 | AC | 218 ms
17,960 KB |
testcase_08 | AC | 265 ms
18,744 KB |
testcase_09 | AC | 236 ms
18,716 KB |
testcase_10 | AC | 119 ms
10,820 KB |
testcase_11 | AC | 125 ms
10,980 KB |
testcase_12 | AC | 190 ms
17,256 KB |
testcase_13 | AC | 187 ms
17,148 KB |
testcase_14 | AC | 256 ms
19,336 KB |
testcase_15 | AC | 232 ms
18,552 KB |
testcase_16 | AC | 195 ms
17,480 KB |
testcase_17 | AC | 117 ms
10,856 KB |
testcase_18 | AC | 155 ms
11,416 KB |
testcase_19 | AC | 165 ms
16,348 KB |
testcase_20 | AC | 166 ms
16,572 KB |
testcase_21 | AC | 169 ms
16,556 KB |
testcase_22 | AC | 146 ms
11,952 KB |
testcase_23 | AC | 227 ms
18,312 KB |
testcase_24 | AC | 159 ms
11,980 KB |
testcase_25 | AC | 138 ms
11,172 KB |
testcase_26 | AC | 135 ms
11,108 KB |
testcase_27 | AC | 154 ms
11,620 KB |
testcase_28 | AC | 240 ms
18,872 KB |
testcase_29 | AC | 202 ms
16,400 KB |
testcase_30 | AC | 244 ms
18,572 KB |
testcase_31 | AC | 152 ms
12,008 KB |
testcase_32 | AC | 157 ms
12,144 KB |
testcase_33 | AC | 21 ms
11,200 KB |
testcase_34 | AC | 32 ms
11,260 KB |
testcase_35 | AC | 157 ms
19,436 KB |
testcase_36 | AC | 161 ms
19,568 KB |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [graph1; $len:expr]) => {{ let mut g = vec![vec![]; $len]; let ab = read_value!($next, [(usize1, usize1)]); for (a, b) in ab { g[a].push(b); g[b].push(a); } g }}; ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } #[allow(unused)] macro_rules! debug { ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap()); } #[allow(unused)] macro_rules! debugln { ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap()); } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) */ struct SegTree<I, BiOp> { n: usize, dat: Vec<I>, op: BiOp, e: I, } impl<I, BiOp> SegTree<I, BiOp> where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ pub fn query(&self, mut a: usize, mut b: usize) -> I { let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } /// Verified by https://atcoder.jp/contests/arc093/submissions/3968098 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; fn calc(a: &[i64], coord: &[i64], lt: bool) -> Vec<(MInt, MInt)> { let n = a.len(); let m = coord.len(); let mut ret = vec![(MInt::new(0), MInt::new(0)); n]; let mut st_f = SegTree::new(m, |x, y| x + y, MInt::new(0)); let mut st_t = SegTree::new(m, |x, y| x + y, MInt::new(0)); for i in 0..n { let idx = coord.binary_search(&a[i]).unwrap(); if lt { ret[i] = (st_f.query(0, idx), st_t.query(0, idx)); } else { ret[i] = (st_f.query(idx + 1, m), st_t.query(idx + 1, m)); } let val = st_f.query(idx, idx + 1); st_f.update(idx, val + 1); let val = st_t.query(idx, idx + 1); st_t.update(idx, val + a[i]); } ret } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (let _ = write!(out,$($format)*);); } #[allow(unused)] macro_rules! putvec { ($v:expr) => { for i in 0..$v.len() { puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "}); } } } input! { n: usize, a: [i64; n], } let mut coord = a.clone(); coord.sort(); coord.dedup(); let mut a = a; let dp = calc(&a, &coord, false); a.reverse(); let mut ep = calc(&a, &coord, true); ep.reverse(); a.reverse(); let mut tot = MInt::new(0); for i in 0..n { let (c, x) = dp[i]; let (d, y) = ep[i]; tot += c * y + d * x + (c * d) * a[i]; } puts!("{}\n", tot); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }