結果
問題 | No.1307 Rotate and Accumulate |
ユーザー | ningenMe |
提出日時 | 2020-12-09 06:12:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 143 ms / 5,000 ms |
コード長 | 8,786 bytes |
コンパイル時間 | 2,949 ms |
コンパイル使用メモリ | 225,444 KB |
実行使用メモリ | 15,892 KB |
最終ジャッジ日時 | 2024-09-19 01:01:23 |
合計ジャッジ時間 | 6,043 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 122 ms
15,148 KB |
testcase_09 | AC | 126 ms
15,216 KB |
testcase_10 | AC | 71 ms
9,508 KB |
testcase_11 | AC | 61 ms
9,896 KB |
testcase_12 | AC | 71 ms
9,428 KB |
testcase_13 | AC | 16 ms
5,376 KB |
testcase_14 | AC | 40 ms
6,516 KB |
testcase_15 | AC | 138 ms
15,892 KB |
testcase_16 | AC | 135 ms
15,888 KB |
testcase_17 | AC | 136 ms
15,892 KB |
testcase_18 | AC | 134 ms
15,768 KB |
testcase_19 | AC | 136 ms
15,892 KB |
testcase_20 | AC | 143 ms
15,764 KB |
testcase_21 | AC | 2 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define ALL(obj) (obj).begin(),(obj).end() template<class T> using priority_queue_reverse = priority_queue<T,vector<T>,greater<T>>; constexpr long long MOD = 1'000'000'000LL + 7; //' constexpr long long MOD2 = 998244353; constexpr long long HIGHINF = (long long)1e18; constexpr long long LOWINF = (long long)1e15; constexpr long double PI = 3.1415926535897932384626433L; template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);} template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));} template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} template <class T> void chmax(T& a, const T b){a=max(a,b);} template <class T> void chmin(T& a, const T b){a=min(a,b);} vector<string> split(const string &str, const char delemiter) {vector<string> res;stringstream ss(str);string buffer; while( getline(ss, buffer, delemiter) ) res.push_back(buffer); return res;} int msb(int x) {return x?31-__builtin_clz(x):-1;} void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} /* * @title ModInt * @docs md/util/ModInt.md */ template<long long mod> class ModInt { public: long long x; constexpr ModInt():x(0) {} constexpr ModInt(long long y) : x(y>=0?(y%mod): (mod - (-y)%mod)%mod) {} ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator+=(const long long y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator+=(const int y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const long long y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const int y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator*=(const ModInt &p) {x = (x * p.x % mod);return *this;} ModInt &operator*=(const long long y) {ModInt p(y);x = (x * p.x % mod);return *this;} ModInt &operator*=(const int y) {ModInt p(y);x = (x * p.x % mod);return *this;} ModInt &operator^=(const ModInt &p) {x = (x ^ p.x) % mod;return *this;} ModInt &operator^=(const long long y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;} ModInt &operator^=(const int y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;} ModInt &operator/=(const ModInt &p) {*this *= p.inv();return *this;} ModInt &operator/=(const long long y) {ModInt p(y);*this *= p.inv();return *this;} ModInt &operator/=(const int y) {ModInt p(y);*this *= p.inv();return *this;} ModInt operator=(const int y) {ModInt p(y);*this = p;return *this;} ModInt operator=(const long long y) {ModInt p(y);*this = p;return *this;} ModInt operator-() const {return ModInt(-x); } ModInt operator++() {x++;if(x>=mod) x-=mod;return *this;} ModInt operator--() {x--;if(x<0) x+=mod;return *this;} ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(const ModInt &p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inv() const {int a=x,b=mod,u=1,v=0,t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);} return ModInt(u);} ModInt pow(long long n) const {ModInt ret(1), mul(x);for(;n > 0;mul *= mul,n >>= 1) if(n & 1) ret *= mul;return ret;} friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;} friend istream &operator>>(istream &is, ModInt &a) {long long t;is >> t;a = ModInt<mod>(t);return (is);} }; //using modint = ModInt<MOD>; /* * @title FastFourierTransform - 高速フーリエ変換 * @docs md/math/FastFourierTransform.md */ class FastFourierTransform { inline static constexpr int prime1 =1004535809; inline static constexpr int prime2 =998244353; inline static constexpr int prime3 =985661441; inline static constexpr int inv21 =332747959; // ModInt<mod2>(mod1).inv().x; inline static constexpr int inv31 =766625513; // ModInt<mod3>(mod1).inv().x; inline static constexpr int inv32 =657107549; // ModInt<mod3>(mod2).inv().x; inline static constexpr long long prime12=(1002772198720536577LL); inline static constexpr array<int,26> pow2 = {1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432}; using Mint1 = ModInt<prime1>; using Mint2 = ModInt<prime2>; using Mint3 = ModInt<prime3>; inline static long long garner(const Mint1& b1,const Mint2& b2,const Mint3& b3) {Mint2 t2 = (b2-b1.x)*inv21;Mint3 t3 = ((b3-b1.x)*inv31-t2.x)*inv32;return prime12*t3.x+b1.x+prime1*t2.x;} template<int prime> inline static void ntt(vector<ModInt<prime>>& f) { const int N = f.size(), M = N>>1; const int log2_N = __builtin_ctz(N); ModInt<prime> h(3); vector<ModInt<prime>> g(N),base(log2_N); for(int i=0;i<log2_N;++i) base[i] = h.pow((prime - 1)/pow2[i+1]); for(int n=0;n<log2_N;++n) { const int& p = pow2[log2_N-n-1]; ModInt<prime> w = 1; for (int i=0,k=0;i<M;i+=p,k=i<<1,w*=base[n]) { for(int j=0;j<p;++j) { ModInt<prime> l = f[k|j],r = w*f[k|j|p]; g[i|j] = l + r; g[i|j|M] = l - r; } } swap(f,g); } } template<int prime> inline static vector<ModInt<prime>> convolution_friendlymod(const vector<long long>& a,const vector<long long>& b){ if (min(a.size(), b.size()) <= 60) { vector<ModInt<prime>> f(a.size() + b.size() - 1); for (int i = 0; i < a.size(); i++) for (int j = 0; j < b.size(); j++) f[i+j]+=a[i]*b[j]; return f; } int N,M=a.size()+b.size()-1; for(N=1;N<M;N*=2); ModInt<prime> inverse(N); inverse = inverse.inv(); vector<ModInt<prime>> g(N,0),h(N,0); for(int i=0;i<a.size();++i) g[i]=a[i]; for(int i=0;i<b.size();++i) h[i]=b[i]; ntt<prime>(g); ntt<prime>(h); for(int i = 0; i < N; ++i) g[i] *= h[i]*inverse; reverse(g.begin()+1,g.end()); ntt<prime>(g); return g; } public: inline static vector<long long> convolution(const vector<long long>& g,const vector<long long>& h){ auto f1 = convolution_friendlymod<prime1>(g, h); auto f2 = convolution_friendlymod<prime2>(g, h); auto f3 = convolution_friendlymod<prime3>(g, h); vector<long long> f(f1.size()); for(int i=0; i<f1.size(); ++i) f[i] = garner(f1[i],f2[i],f3[i]); return f; } }; /** * @url * @est */ int main() { cin.tie(0);ios::sync_with_stdio(false); int N,Q; cin >> N >> Q; vector<long long> A(N),B(N,0),D(N,0); for(int i=0;i<N;++i) cin >> A[i]; while(Q--){ int r; cin >> r; B[N-1-r]++; } auto C = FastFourierTransform::convolution(A,B); for(int i=0;i<2*N-1;++i) { D[(i+1)%N]+=C[i]; } for(int i=0;i<N;++i) cout << D[i] << " \n"[i==N-1]; return 0; }