結果
問題 | No.1321 塗るめた |
ユーザー | tsutaj |
提出日時 | 2020-12-11 00:11:17 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,700 bytes |
コンパイル時間 | 1,413 ms |
コンパイル使用メモリ | 121,448 KB |
実行使用メモリ | 29,224 KB |
最終ジャッジ日時 | 2024-09-19 21:13:07 |
合計ジャッジ時間 | 7,673 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
6,816 KB |
testcase_01 | AC | 9 ms
6,944 KB |
testcase_02 | AC | 5 ms
6,940 KB |
testcase_03 | AC | 6 ms
6,944 KB |
testcase_04 | AC | 6 ms
6,944 KB |
testcase_05 | AC | 5 ms
6,940 KB |
testcase_06 | AC | 5 ms
6,940 KB |
testcase_07 | AC | 6 ms
6,940 KB |
testcase_08 | AC | 5 ms
6,940 KB |
testcase_09 | AC | 6 ms
6,940 KB |
testcase_10 | AC | 6 ms
6,940 KB |
testcase_11 | AC | 6 ms
6,944 KB |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 10 ms
6,944 KB |
testcase_18 | AC | 158 ms
27,420 KB |
testcase_19 | AC | 43 ms
11,060 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | AC | 168 ms
27,472 KB |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 169 ms
27,316 KB |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | AC | 69 ms
16,444 KB |
testcase_35 | AC | 64 ms
16,440 KB |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | AC | 6 ms
6,944 KB |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | AC | 70 ms
16,444 KB |
testcase_46 | AC | 21 ms
8,308 KB |
ソースコード
// #define _GLIBCXX_DEBUG // for STL debug (optional) #include <iostream> #include <iomanip> #include <cstdio> #include <string> #include <cstring> #include <deque> #include <list> #include <queue> #include <stack> #include <vector> #include <utility> #include <algorithm> #include <map> #include <set> #include <complex> #include <cmath> #include <limits> #include <cfloat> #include <climits> #include <ctime> #include <cassert> #include <numeric> #include <fstream> #include <functional> #include <bitset> using namespace std; using ll = long long int; using int64 = long long int; template<typename T> void chmax(T &a, T b) {a = max(a, b);} template<typename T> void chmin(T &a, T b) {a = min(a, b);} template<typename T> void chadd(T &a, T b) {a = a + b;} int dx[] = {0, 0, 1, -1}; int dy[] = {1, -1, 0, 0}; const int INF = 1LL << 29; const ll LONGINF = 1LL << 60; const ll MOD = 998244353LL; //BEGIN CUT HERE template<typename T, T MOD = 1000000007> struct Mint{ static constexpr T mod = MOD; T v; Mint():v(0){} Mint(signed v):v(v){} Mint(long long t){v=t%MOD;if(v<0) v+=MOD;} Mint pow(long long k){ Mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static Mint add_identity(){return Mint(0);} static Mint mul_identity(){return Mint(1);} Mint inv(){return pow(MOD-2);} Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;} Mint& operator/=(Mint a){return (*this)*=a.inv();} Mint operator+(Mint a) const{return Mint(v)+=a;} Mint operator-(Mint a) const{return Mint(v)-=a;} Mint operator*(Mint a) const{return Mint(v)*=a;} Mint operator/(Mint a) const{return Mint(v)/=a;} Mint operator-() const{return v?Mint(MOD-v):Mint(v);} bool operator==(const Mint a)const{return v==a.v;} bool operator!=(const Mint a)const{return v!=a.v;} bool operator <(const Mint a)const{return v <a.v;} static Mint comb(long long n,int k){ Mint num(1),dom(1); for(int i=0;i<k;i++){ num*=Mint(n-i); dom*=Mint(i+1); } return num/dom; } }; template<typename T, T MOD> constexpr T Mint<T, MOD>::mod; template<typename T, T MOD> ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;} constexpr int bmds(int x){ const int v[] = {1012924417, 924844033, 998244353, 897581057, 645922817}; return v[x]; } constexpr int brts(int x){ const int v[] = {5, 5, 3, 3, 3}; return v[x]; } template<int X> struct NTT{ static constexpr int md = bmds(X); static constexpr int rt = brts(X); using M = Mint<int, md>; vector< vector<M> > rts,rrts; void ensure_base(int n){ if((int)rts.size()>=n) return; rts.resize(n);rrts.resize(n); for(int i=1;i<n;i<<=1){ if(!rts[i].empty()) continue; M w=M(rt).pow((md-1)/(i<<1)); M rw=w.inv(); rts[i].resize(i);rrts[i].resize(i); rts[i][0]=M(1);rrts[i][0]=M(1); for(int k=1;k<i;k++){ rts[i][k]=rts[i][k-1]*w; rrts[i][k]=rrts[i][k-1]*rw; } } } void ntt(vector<M> &as,bool f){ int n=as.size(); assert((n&(n-1))==0); ensure_base(n); for(int i=0,j=1;j+1<n;j++){ for(int k=n>>1;k>(i^=k);k>>=1); if(i>j) swap(as[i],as[j]); } for(int i=1;i<n;i<<=1){ for(int j=0;j<n;j+=i*2){ for(int k=0;k<i;k++){ M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]); as[i+j+k]=as[j+k]-z; as[j+k]+=z; } } } if(f){ M tmp=M(n).inv(); for(int i=0;i<n;i++) as[i]*=tmp; } } vector<M> multiply(vector<M> as,vector<M> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; as.resize(sz,M(0)); bs.resize(sz,M(0)); ntt(as,0);ntt(bs,0); for(int i=0;i<sz;i++) as[i]*=bs[i]; ntt(as,1); as.resize(need); return as; } vector<int> multiply(vector<int> as,vector<int> bs){ vector<M> am(as.size()),bm(bs.size()); for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]); for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]); vector<M> cm=multiply(am,bm); vector<int> cs(cm.size()); for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v; return cs; } }; template<int X> constexpr int NTT<X>::md; template<int X> constexpr int NTT<X>::rt; //BEGIN CUT HERE template<typename M_> class Enumeration{ using M = M_; protected: static vector<M> fact,finv,invs; public: static void init(int n){ n=min<decltype(M::mod)>(n,M::mod-1); int m=fact.size(); if(n<m) return; fact.resize(n+1,1); finv.resize(n+1,1); invs.resize(n+1,1); if(m==0) m=1; for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i); finv[n]=M(1)/fact[n]; for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i); for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1]; } static M Fact(int n){ init(n); return fact[n]; } static M Finv(int n){ init(n); return finv[n]; } static M Invs(int n){ init(n); return invs[n]; } static M C(int n,int k){ if(n<k or k<0) return M(0); init(n); return fact[n]*finv[n-k]*finv[k]; } static M P(int n,int k){ if(n<k or k<0) return M(0); init(n); return fact[n]*finv[n-k]; } // put n identical balls into k distinct boxes static M H(int n,int k){ if(n<0 or k<0) return M(0); if(!n and !k) return M(1); init(n+k); return C(n+k-1,n); } }; template<typename M> vector<M> Enumeration<M>::fact=vector<M>(); template<typename M> vector<M> Enumeration<M>::finv=vector<M>(); template<typename M> vector<M> Enumeration<M>::invs=vector<M>(); template<typename M_> struct FormalPowerSeries : Enumeration<M_> { using M = M_; using super = Enumeration<M>; using super::fact; using super::finv; using super::invs; using Poly = vector<M>; using Conv = function<Poly(Poly, Poly)>; Conv conv; FormalPowerSeries(Conv conv):conv(conv){} Poly pre(const Poly &as,int deg){ return Poly(as.begin(),as.begin()+min((int)as.size(),deg)); } Poly add(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i]; return cs; } Poly sub(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i]; return cs; } Poly mul(Poly as,Poly bs){ return conv(as,bs); } Poly mul(Poly as,M k){ for(auto &a:as) a*=k; return as; } bool is_zero(Poly as){ return as==Poly(as.size(),0); } void shrink(Poly &as){ assert(not is_zero(as)); while(as.back()==M(0)) as.pop_back(); } // F(0) must not be 0 Poly inv(Poly as,int deg); // not zero Poly div(Poly as,Poly bs); // not zero Poly mod(Poly as,Poly bs); // F(0) must be 1 Poly sqrt(Poly as,int deg); Poly diff(Poly as); Poly integral(Poly as); // F(0) must be 1 Poly log(Poly as,int deg); // F(0) must be 0 Poly exp(Poly as,int deg); // not zero Poly pow(Poly as,long long k,int deg); // x <- x + c Poly shift(Poly as,M c); }; template<typename M> vector<M> FormalPowerSeries<M>::inv(Poly as,int deg){ assert(as[0]!=M(0)); Poly rs({M(1)/as[0]}); for(int i=1;i<deg;i<<=1) rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1); return rs; } int main() { int N, M, K; cin >> N >> M >> K; NTT<2> ntt; using mint = NTT<2>::M; auto conv = [&](auto as, auto bs) { return ntt.multiply(as, bs); }; FormalPowerSeries<mint> FPS(conv); Enumeration<mint> comb; comb.init(200010); // dp[k][i] = dp[k][i-1] * k + dp[k-1][i-1] * (K-k+1) // F = F*k*x + F'*(K-k+1)*x // F(1-k*x) = F'(K-k+1)*x // F = F'(K-k+1)*x / (1-k*x) // F = \Pi_{k=1}^{K} (K-k+1)*x / \Pi_{k=1}^{K} (1-k*x) // F = K!*x / \Pi_{k=1}^{K} (1-k*x) // 多項式の inv があれば OK auto go = [&](auto &&self, int l, int r) -> vector<mint> { if(r - l == 1) { return {mint(1), mint(-r)}; } int m = (l + r) / 2; return ntt.multiply(self(self, l, m), self(self, m, r)); }; vector<mint> A(K+1); A[K] = mint(1); for(int i=1; i<=K; i++) A[K] *= mint(i); vector<mint> B = FPS.inv(go(go, 0, K), N+1); vector<mint> X = ntt.multiply(A, B); mint ans(0); for(int i=K; i<=N; i++) { mint ways = X[i]; ways *= comb.C(M, K); ways *= comb.H(N-i, i+1) * mint(M).pow(N-i); ans += ways; } cout << ans << endl; return 0; }