結果
問題 | No.1307 Rotate and Accumulate |
ユーザー | yuruhiya |
提出日時 | 2020-12-13 12:40:10 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 223 ms / 5,000 ms |
コード長 | 45,383 bytes |
コンパイル時間 | 4,101 ms |
コンパイル使用メモリ | 223,328 KB |
最終ジャッジ日時 | 2025-01-16 23:37:01 |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 19 |
ソースコード
#line 2 "/home/yuruhiya/programming/library/template/template.cpp" #include <bits/stdc++.h> #line 4 "/home/yuruhiya/programming/library/template/constants.cpp" #include <string_view> #line 7 "/home/yuruhiya/programming/library/template/constants.cpp" #define rep(i, n) for (int i = 0; i < (n); ++i) #define FOR(i, m, n) for (int i = (m); i < (n); ++i) #define rrep(i, n) for (int i = (n)-1; i >= 0; --i) #define rfor(i, m, n) for (int i = (m); i >= (n); --i) #define unless(c) if (!(c)) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r) using namespace std; using ll = long long; using LD = long double; using VB = vector<bool>; using VVB = vector<VB>; using VI = vector<int>; using VVI = vector<VI>; using VL = vector<ll>; using VVL = vector<VL>; using VS = vector<string>; using VD = vector<LD>; using PII = pair<int, int>; using VP = vector<PII>; using PLL = pair<ll, ll>; using VPL = vector<PLL>; template <class T> using PQ = priority_queue<T>; template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>; constexpr int inf = 1000000000; constexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007; constexpr long double PI = 3.14159265358979323846, EPS = 1e-12; namespace CharacterClass { constexpr string_view digit = "0123456789", xdigit = "0123456789ABCDEFabcdef", lower = "abcdefghijklmnopqrstuvwxyz", upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ", alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", alnum = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", word = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz", punct = R"(!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~)", graph = R"(!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~)", print = R"( !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~)", blank = " \t", space = " \t\n\r\f\v"; } // namespace CharacterClass #line 7 "/home/yuruhiya/programming/library/template/Input.cpp" using namespace std; #ifdef _WIN32 #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #define fwrite_unlocked fwrite #define fflush_unlocked fflush #endif class Scanner { static int gc() { return getchar_unlocked(); } static char next_char() { char c; read(c); return c; } template <class T> static void read(T& v) { cin >> v; } static void read(char& v) { while (isspace(v = gc())) ; } static void read(bool& v) { v = next_char() != '0'; } static void read(string& v) { v.clear(); for (char c = next_char(); !isspace(c); c = gc()) v += c; } static void read(int& v) { v = 0; bool neg = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void read(long long& v) { v = 0; bool neg = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void read(double& v) { v = 0; double dp = 1; bool neg = false, after_dp = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') { after_dp = true; } else if (after_dp) { v += (c - '0') * (dp *= 0.1); } else { v = v * 10 + (c - '0'); } } if (neg) v = -v; } static void read(long double& v) { v = 0; long double dp = 1; bool neg = false, after_dp = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') { after_dp = true; } else if (after_dp) { v += (c - '0') * (dp *= 0.1); } else { v = v * 10 + (c - '0'); } } if (neg) v = -v; } template <class T, class U> static void read(pair<T, U>& v) { read(v.first); read(v.second); } template <class T> static void read(vector<T>& v) { for (auto& e : v) read(e); } template <size_t N = 0, class T> static void read_tuple_impl(T& v) { if constexpr (N < tuple_size_v<T>) { read(get<N>(v)); read_tuple_impl<N + 1>(v); } } template <class... T> static void read(tuple<T...>& v) { read_tuple_impl(v); } struct ReadVectorHelper { size_t n; ReadVectorHelper(size_t _n) : n(_n) {} template <class T> operator vector<T>() { vector<T> v(n); read(v); return v; } }; struct Read2DVectorHelper { size_t n, m; Read2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {} template <class T> operator vector<vector<T>>() { vector<vector<T>> v(n, vector<T>(m)); read(v); return v; } }; public: string read_line() const { string v; for (char c = gc(); c != '\n' && c != '\0'; c = gc()) v += c; return v; } template <class T> T read() const { T v; read(v); return v; } template <class T> vector<T> read_vector(size_t n) const { vector<T> a(n); read(a); return a; } template <class T> operator T() const { return read<T>(); } int operator--(int) const { return read<int>() - 1; } ReadVectorHelper operator[](size_t n) const { return ReadVectorHelper(n); } Read2DVectorHelper operator[](const pair<size_t, size_t>& nm) const { return Read2DVectorHelper(nm); } void operator()() const {} template <class H, class... T> void operator()(H&& h, T&&... t) const { read(h); operator()(forward<T>(t)...); } private: template <template <class...> class, class...> struct Multiple; template <template <class...> class V, class Head, class... Tail> struct Multiple<V, Head, Tail...> { template <class... Args> using vec = V<vector<Head>, Args...>; using type = typename Multiple<vec, Tail...>::type; }; template <template <class...> class V> struct Multiple<V> { using type = V<>; }; template <class... T> using multiple_t = typename Multiple<tuple, T...>::type; template <size_t N = 0, class T> void multiple_impl(T& t) const { if constexpr (N < tuple_size_v<T>) { auto& vec = get<N>(t); using V = typename remove_reference_t<decltype(vec)>::value_type; vec.push_back(read<V>()); multiple_impl<N + 1>(t); } } public: template <class... T> auto multiple(size_t h) const { multiple_t<T...> result; while (h--) multiple_impl(result); return result; } } in; #define inputs(T, ...) \ T __VA_ARGS__; \ in(__VA_ARGS__) #define ini(...) inputs(int, __VA_ARGS__) #define inl(...) inputs(long long, __VA_ARGS__) #define ins(...) inputs(string, __VA_ARGS__) #line 7 "/home/yuruhiya/programming/library/template/Output.cpp" #include <charconv> #line 10 "/home/yuruhiya/programming/library/template/Output.cpp" using namespace std; struct BoolStr { const char *t, *f; BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {} } Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0"); struct DivStr { const char *d, *l; DivStr(const char* _d, const char* _l) : d(_d), l(_l) {} } spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"), no_endl(" ", ""); class Output { BoolStr B{Yes}; DivStr D{spc}; public: void put(int v) const { char buf[12]{}; if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) { fwrite(buf, sizeof(char), ptr - buf, stdout); } else { assert(false); } } void put(long long v) const { char buf[21]{}; if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) { fwrite(buf, sizeof(char), ptr - buf, stdout); } else { assert(false); } } void put(bool v) const { put(v ? B.t : B.f); } void put(vector<bool>::reference v) const { put(v ? B.t : B.f); } void put(char v) const { putchar_unlocked(v); } void put(const char* v) const { fwrite_unlocked(v, 1, strlen(v), stdout); } void put(double v) const { printf("%.20f", v); } void put(long double v) const { printf("%.20Lf", v); } template <class T> void put(const T& v) const { cout << v; } template <class T, class U> void put(const pair<T, U>& v) const { put(v.first); put(D.d); put(v.second); } template <class InputIterater> void put_range(const InputIterater& begin, const InputIterater& end) const { for (InputIterater i = begin; i != end; ++i) { if (i != begin) put(D.d); put(*i); } } template <class T> void put(const vector<T>& v) const { put_range(v.begin(), v.end()); } template <class T, size_t N> void put(const array<T, N>& v) const { put_range(v.begin(), v.end()); } template <class T> void put(const vector<vector<T>>& v) const { for (size_t i = 0; i < v.size(); ++i) { if (i) put(D.l); put(v[i]); } } Output() = default; Output(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {} Output& operator()() { put(D.l); return *this; } template <class H> Output& operator()(H&& h) { put(h); put(D.l); return *this; } template <class H, class... T> Output& operator()(H&& h, T&&... t) { put(h); put(D.d); return operator()(forward<T>(t)...); } template <class InputIterator> Output& range(const InputIterator& begin, const InputIterator& end) { put_range(begin, end); put(D.l); return *this; } template <class T> Output& range(const T& a) { range(a.begin(), a.end()); return *this; } template <class... T> void exit(T&&... t) { operator()(forward<T>(t)...); std::exit(EXIT_SUCCESS); } Output& flush() { fflush_unlocked(stdout); return *this; } Output& set(const BoolStr& b) { B = b; return *this; } Output& set(const DivStr& d) { D = d; return *this; } Output& set(const char* t, const char* f) { B = BoolStr(t, f); return *this; } } out; #line 3 "/home/yuruhiya/programming/library/template/Step.cpp" using namespace std; template <class T> struct Step { using value_type = T; class iterator { value_type a, b, c; public: constexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {} constexpr iterator(value_type _b, value_type _c, value_type _s) : a(_b), b(_c), c(_s) {} constexpr iterator& operator++() { --b; a += c; return *this; } constexpr iterator operator++(int) { iterator tmp = *this; --b; a += c; return tmp; } constexpr const value_type& operator*() const { return a; } constexpr const value_type* operator->() const { return &a; } constexpr bool operator==(const iterator& i) const { return b == i.b; } constexpr bool operator!=(const iterator& i) const { return !(b == i.b); } constexpr value_type start() const { return a; } constexpr value_type size() const { return b; } constexpr value_type step() const { return c; } }; constexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {} constexpr iterator begin() const { return be; } constexpr iterator end() const { return en; } constexpr value_type start() const { return be.start(); } constexpr value_type size() const { return be.size(); } constexpr value_type step() const { return be.step(); } constexpr value_type sum() const { return start() * size() + step() * (size() * (size() - 1) / 2); } operator vector<value_type>() const { return to_a(); } auto to_a() const { vector<value_type> result; result.reserve(size()); for (auto i : *this) { result.push_back(i); } return result; } private: iterator be, en; }; template <class T> constexpr auto step(T a) { return Step<T>(0, a, 1); } template <class T> constexpr auto step(T a, T b) { return Step<T>(a, b - a, 1); } template <class T> constexpr auto step(T a, T b, T c) { return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c); } #line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp" using namespace std; template <class F> struct Callable { F func; Callable(const F& f) : func(f) {} }; template <class T, class F> auto operator|(const T& v, const Callable<F>& c) { return c.func(v); } struct Sort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) { sort(begin(v), end(v)); return v; } } Sort; struct SortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) < f(j); }); return v; }); } } SortBy; struct RSort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(rbegin(v), rend(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) { sort(rbegin(v), rend(v)); return v; } } RSort; struct RSortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) > f(j); }); return v; }); } } RSortBy; struct Reverse_impl { template <class T> friend auto operator|(T v, const Reverse_impl& c) { reverse(begin(v), end(v)); return v; } } Reverse; struct Unique_impl { template <class T> friend auto operator|(T v, const Unique_impl& c) { v.erase(unique(begin(v), end(v), end(v))); return v; } } Unique; struct Uniq_impl { template <class T> friend auto operator|(T v, const Uniq_impl& c) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); return v; } } Uniq; struct Rotate_impl { auto operator()(int&& left) { return Callable([&](auto v) { int s = static_cast<int>(size(v)); assert(-s <= left && left <= s); if (0 <= left) { rotate(begin(v), begin(v) + left, end(v)); } else { rotate(begin(v), end(v) + left, end(v)); } return v; }); } } Rotate; struct Max_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return *max_element(begin(v), end(v), f); }); } template <class T> friend auto operator|(T v, const Max_impl& c) { return *max_element(begin(v), end(v)); } } Max; struct Min_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return *min_element(begin(v), end(v), f); }); } template <class T> friend auto operator|(T v, const Min_impl& c) { return *min_element(begin(v), end(v)); } } Min; struct MaxPos_impl { template <class T> friend auto operator|(T v, const MaxPos_impl& c) { return max_element(begin(v), end(v)) - begin(v); } } MaxPos; struct MinPos_impl { template <class T> friend auto operator|(T v, const MinPos_impl& c) { return min_element(begin(v), end(v)) - begin(v); } } MinPos; struct MaxBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_it = begin(v); auto max_val = f(*max_it); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); max_val < val) { max_it = it; max_val = val; } } return *max_it; }); } } MaxBy; struct MinBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_it = begin(v); auto min_val = f(*min_it); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); min_val > val) { min_it = it; min_val = val; } } return *min_it; }); } } MinBy; struct MaxOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_val = f(*begin(v)); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); max_val < val) { max_val = val; } } return max_val; }); } } MaxOf; struct MinOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_val = f(*begin(v)); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); min_val > val) { min_val = val; } } return min_val; }); } } MinOf; struct Count_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) { return count(begin(v), end(v), val); }); } } Count; struct CountIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return count_if(begin(v), end(v), f); }); } } CountIf; struct Index_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) -> optional<int> { auto result = find(begin(v), end(v), val); return result != end(v) ? optional(result - begin(v)) : nullopt; }); } } Index; struct IndexIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> optional<int> { auto result = find_if(begin(v), end(v), f); return result != end(v) ? optional(result - begin(v)) : nullopt; }); } } IndexIf; struct FindIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> optional<typename decltype(v)::value_type> { auto result = find_if(begin(v), end(v), f); return result != end(v) ? optional(*result) : nullopt; }); } } FindIf; struct Sum_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return accumulate(next(begin(v)), end(v), f(*begin(v)), [&](const auto& a, const auto& b) { return a + f(b); }); }); } template <class T> friend auto operator|(T v, const Sum_impl& c) { return accumulate(begin(v), end(v), typename T::value_type{}); } } Sum; struct Includes { template <class V> auto operator()(const V& val) { return Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); }); } } Includes; struct IncludesIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); }); } } IncludesIf; struct RemoveIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { v.erase(remove_if(begin(v), end(v), f), end(v)); return v; }); } } RemoveIf; struct Each_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { f(i); } }); } } Each; struct Select_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using value_type = typename decltype(v)::value_type; vector<value_type> result; for (const auto& i : v) { if (f(i)) result.push_back(i); } return result; }); } } Select; struct Map_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using result_type = invoke_result_t<F, typename decltype(v)::value_type>; vector<result_type> result; result.reserve(size(v)); for (const auto& i : v) { result.push_back(f(i)); } return result; }); } } Map; struct Indexed_impl { template <class T> friend auto operator|(const T& v, Indexed_impl& c) { using value_type = typename T::value_type; vector<pair<value_type, int>> result; result.reserve(size(v)); int index = 0; for (const auto& i : v) { result.emplace_back(i, index++); } return result; } } Indexed; struct AllOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (!f(i)) return false; } return true; }); } } AllOf; struct AnyOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return true; } return false; }); } } AnyOf; struct NoneOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return false; } return true; }); } } NoneOf; struct Tally_impl { template <class F> auto operator()(size_t max_val) { return Callable([&](auto v) { vector<size_t> result(max_val); for (const auto& i : v) { result[static_cast<size_t>(i)]++; } return result; }); } template <class T, class value_type = typename T::value_type> friend auto operator|(const T& v, Tally_impl& c) { map<value_type, size_t> result; for (const auto& i : v) { result[i]++; } return result; } } Tally; template <class T> auto operator*(const vector<T>& a, size_t n) { T result; for (size_t i = 0; i < n; ++i) { result.insert(result.end(), a.begin(), a.end()); } return result; } auto operator*(string a, size_t n) { string result; for (size_t i = 0; i < n; ++i) { result += a; } return result; } template <class T, class U> auto& operator<<(vector<T>& a, const U& b) { a.insert(a.end(), all(b)); return a; } template <class T> auto& operator<<(string& a, const T& b) { a.insert(a.end(), all(b)); return a; } template <class T, class U> auto operator+(vector<T> a, const U& b) { a << b; return a; } template <class T> auto operator+(string a, const T& b) { a << b; return a; } #line 7 "/home/yuruhiya/programming/library/template/functions.cpp" using namespace std; template <class T = long long> constexpr T TEN(size_t n) { T result = 1; for (size_t i = 0; i < n; ++i) result *= 10; return result; } template <class T, class U, enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr> constexpr auto div_ceil(T n, U m) { return (n + m - 1) / m; } template <class T, class U> constexpr auto div_ceil2(T n, U m) { return div_ceil(n, m) * m; } template <class T> constexpr T triangle(T n) { return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1); } template <class T> constexpr T nC2(T n) { return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1); } template <class T, class U> constexpr auto middle(const T& l, const U& r) { return l + (r - l) / 2; } template <class T, class U, class V> constexpr bool in_range(const T& v, const U& lower, const V& upper) { return lower <= v && v < upper; } template <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr> constexpr bool is_square(T n) { T s = sqrt(n); return s * s == n || (s + 1) * (s + 1) == n; } template <class T = long long> constexpr T BIT(int b) { return T(1) << b; } template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr> constexpr T Pow(T a, U n) { assert(n >= 0); T result = 1; while (n > 0) { if (n & 1) { result *= a; n--; } else { a *= a; n >>= 1; } } return result; } template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr> constexpr T Powmod(T a, U n, T mod) { assert(n >= 0); if (a > mod) a %= mod; T result = 1; while (n > 0) { if (n & 1) { result = result * a % mod; n--; } else { a = a * a % mod; n >>= 1; } } return result; } template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } return false; } template <class T> int sz(const T& v) { return v.size(); } template <class T, class U> int lower_index(const T& a, const U& v) { return lower_bound(all(a), v) - a.begin(); } template <class T, class U> int upper_index(const T& a, const U& v) { return upper_bound(all(a), v) - a.begin(); } template <class T> auto Slice(const T& v, size_t i, size_t len) { return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T(); } template <class T, class U = typename T::value_type> U Gcdv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>); } template <class T, class U = typename T::value_type> U Lcmv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>); } namespace internal { template <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) { if constexpr (N == 1) { return vector(sizes[0], init); } else { int size = sizes[N - 1]; sizes.pop_back(); return vector(size, make_vector<T, N - 1>(sizes, init)); } } } // namespace internal template <class T, size_t N> auto make_vector(const int (&sizes)[N], const T& init = T()) { vector s(rbegin(sizes), rend(sizes)); return internal::make_vector<T, N>(s, init); } #line 9 "/home/yuruhiya/programming/library/template/template.cpp" #if __has_include(<library/dump.hpp>) #include <library/dump.hpp> #define LOCAL #else #define dump(...) ((void)0) #endif template <class T> constexpr T oj_local(const T& oj, const T& local) { #ifndef LOCAL return oj; #else return local; #endif } #line 1 "/home/yuruhiya/programming/library/atcoder/convolution.hpp" #line 1 "/home/yuruhiya/programming/library/atcoder/internal_bit.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #line 1 "/home/yuruhiya/programming/library/atcoder/modint.hpp" #line 1 "/home/yuruhiya/programming/library/atcoder/internal_math.hpp" #line 5 "/home/yuruhiya/programming/library/atcoder/internal_math.hpp" namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #line 1 "/home/yuruhiya/programming/library/atcoder/internal_type_traits.hpp" #line 6 "/home/yuruhiya/programming/library/atcoder/internal_type_traits.hpp" #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 9 "/home/yuruhiya/programming/library/atcoder/modint.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #line 11 "/home/yuruhiya/programming/library/atcoder/convolution.hpp" namespace atcoder { namespace internal { template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector<mint> ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #line 3 "a.cpp" int main() { ini(n, q); VL a = in[n], r = in[q]; VL x(2 * n); rep(i, 2 * n) x[i] = a[i % n]; VL y(n + 1); rep(i, q) y[n - r[i]]++; VL ans = atcoder::convolution_ll(x, y); out.range(range_it(ans, n, n * 2)); }