結果
問題 | No.931 Multiplicative Convolution |
ユーザー | ayaoni |
提出日時 | 2020-12-19 12:05:32 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 251 ms / 2,000 ms |
コード長 | 2,753 bytes |
コンパイル時間 | 205 ms |
コンパイル使用メモリ | 81,976 KB |
実行使用メモリ | 121,856 KB |
最終ジャッジ日時 | 2024-09-21 10:11:21 |
合計ジャッジ時間 | 5,141 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
53,248 KB |
testcase_01 | AC | 40 ms
52,992 KB |
testcase_02 | AC | 40 ms
52,864 KB |
testcase_03 | AC | 40 ms
52,736 KB |
testcase_04 | AC | 44 ms
52,864 KB |
testcase_05 | AC | 47 ms
60,544 KB |
testcase_06 | AC | 67 ms
69,888 KB |
testcase_07 | AC | 91 ms
77,952 KB |
testcase_08 | AC | 251 ms
113,152 KB |
testcase_09 | AC | 242 ms
121,856 KB |
testcase_10 | AC | 250 ms
111,744 KB |
testcase_11 | AC | 236 ms
116,992 KB |
testcase_12 | AC | 168 ms
97,536 KB |
testcase_13 | AC | 249 ms
111,744 KB |
testcase_14 | AC | 250 ms
113,280 KB |
testcase_15 | AC | 251 ms
113,152 KB |
testcase_16 | AC | 249 ms
111,540 KB |
ソースコード
import sys sys.setrecursionlimit(10**7) def I(): return int(sys.stdin.readline().rstrip()) def MI(): return map(int,sys.stdin.readline().rstrip().split()) def LI(): return list(map(int,sys.stdin.readline().rstrip().split())) def LI2(): return list(map(int,sys.stdin.readline().rstrip())) def S(): return sys.stdin.readline().rstrip() def LS(): return list(sys.stdin.readline().rstrip().split()) def LS2(): return list(sys.stdin.readline().rstrip()) def min_primitive_root(p): # 素数pの最小の原始根 if p == 2: return 1 n = p-1 prime_list = [] # n の素因数 for i in range(2,int(n**.5)+1): if n % i == 0: prime_list.append(i) while n % i == 0: n //= i if n != 1: prime_list.append(n) a = 2 # 原始根の候補 n = p-1 while True: for prime in prime_list: if pow(a,n//prime,p) == 1: a += 1 break else: return a # 998244353 = 119*2**23+1 mod = 998244353 primitive_root = 3 # mod の原始根 roots = [pow(primitive_root,(mod-1) >> i,mod) for i in range(24)] inv_roots = [pow(r,mod-2,mod) for r in roots] # roots[i] = 1 の 2**i 乗根、inv_roots[i] = 1 の 2**i 乗根の逆元 # 順番は変わる def ntt(A,n): for i in range(n): m = 1 << (n-i-1) for start in range(1 << i): w = 1 start *= m*2 for j in range(m): A[start+j],A[start+j+m] = (A[start+j]+A[start+j+m]) % mod,(A[start+j]-A[start+j+m])*w % mod w *= roots[n-i] w %= mod return A def inv_ntt(A,n): for i in range(n): m = 1 << i for start in range(1 << (n-i-1)): w = 1 start *= m*2 for j in range(m): A[start+j],A[start+j+m] = (A[start+j]+A[start+j+m]*w) % mod,(A[start+j]-A[start+j+m]*w) % mod w *= inv_roots[i+1] w %= mod a = pow(2,n*(mod-2),mod) for i in range(1 << n): A[i] *= a A[i] %= mod return A def convolution(A,B): a,b = len(A),len(B) deg = a+b-2 n = deg.bit_length() N = 1 << n A += [0]*(N-a) # A の次数を 2冪-1 にする B += [0]*(N-b) # B の次数を 2冪-1 にする A = ntt(A,n) B = ntt(B,n) C = [(A[i]*B[i]) % mod for i in range(N)] C = inv_ntt(C,n) return C[:deg+1] P = I() A,B = [0]+LI(),[0]+LI() r = min_primitive_root(P) AA = [] BB = [] x = 1 for i in range(P-1): AA.append(A[x]) BB.append(B[x]) x *= r x %= P CC = convolution(AA,BB) ANS = [0]*P x = 1 for i in range(len(CC)): ANS[x % P] += CC[i] ANS[x % P] %= mod x *= r x %= P print(*ANS[1:])