結果
問題 | No.1322 Totient Bound |
ユーザー | Min_25 |
提出日時 | 2020-12-19 12:40:01 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,974 bytes |
コンパイル時間 | 1,054 ms |
コンパイル使用メモリ | 87,592 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-21 10:11:48 |
合計ジャッジ時間 | 7,346 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,944 KB |
testcase_10 | AC | 3 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 3 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 58 ms
6,944 KB |
testcase_19 | AC | 91 ms
6,944 KB |
testcase_20 | AC | 241 ms
6,940 KB |
testcase_21 | AC | 264 ms
6,940 KB |
testcase_22 | AC | 269 ms
6,940 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 325 ms
6,940 KB |
testcase_29 | AC | 324 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 327 ms
6,944 KB |
testcase_34 | AC | 322 ms
6,940 KB |
testcase_35 | WA | - |
testcase_36 | AC | 328 ms
6,940 KB |
testcase_37 | AC | 319 ms
6,940 KB |
testcase_38 | AC | 323 ms
6,940 KB |
ソースコード
#include <cstdio> #include <ctime> #include <cassert> #include <cstdlib> #include <cmath> #include <algorithm> #include <map> #include <vector> #include <tuple> #include <array> #include <functional> using namespace std; using u8 = unsigned char; using i64 = long long; using u64 = long long unsigned; int isqrt(i64 n) { return sqrtl(n); } i64 divide(i64 n, i64 d) { return double(n) / d; } __attribute__((target("avx"), optimize("O3", "unroll-loops"))) pair< vector<int>, vector<i64> > prime_counts(const i64 N) { const int v = isqrt(N); vector<int> smalls(v + 1); vector<i64> larges(v + 1); for (int i = 1; i <= v; ++i) smalls[i] = i - 1; for (int i = 1; i <= v; ++i) larges[i] = N / i - 1; for (int p = 2, pcnt = 0; p <= v; ++p) if (smalls[p] > smalls[p - 1]) { const i64 M = N / p, q = i64(p) * p; const int w = v / p, l = min<i64>(v, N / q); for (int i = 1; i <= w; ++i) larges[i] -= larges[i * p] - pcnt; const int t = min(isqrt(M), l); for (int i = w + 1; i <= t; ++i) larges[i] -= smalls[divide(M, i)] - pcnt; for (int i = l, j = M / l; i > t; ++j) { int c = smalls[j]; while (j + 1 <= v && smalls[j + 1] == c) ++j; c -= pcnt; for (int e = max<int>(t, divide(M, j + 1)); i > e; --i) larges[i] -= c; } for (int i = v, j = v / p; j >= p; --j) { const int c = smalls[j] - pcnt; for (int e = j * p; i >= e; --i) smalls[i] -= c; } ++pcnt; } return make_pair(smalls, larges); } using u8 = unsigned char; vector<int> prime_sieve(int N) { if (N <= 1) return vector<int>(); const int sieve_size = 32 << 10; static u8 block[sieve_size]; const int v = sqrt(N), vv = sqrt(v); vector<bool> is_prime(v + 1, 1); vector<pair<int, int>> sprimes; for (int i = 2; i <= vv; ++i) if (is_prime[i]) { for (int j = i * i; j <= v; j += i) is_prime[j] = 0; } for (int i = 3; i <= v; i += 2) if (is_prime[i]) sprimes.emplace_back(i, i * i / 2); const int rsize = N > 60184 ? N / (log(N) - 1.1) : max(1., N / (log(N) - 1.11)) + 1; vector<int> primes(1, 2); primes.resize(rsize); int psize = 1; auto* pblock = block - 1; for (int beg = 1; beg < (N + 1) / 2; beg += sieve_size, pblock -= sieve_size) { int end = min(beg + sieve_size, (N + 1) / 2); fill(block, block + sieve_size, 1); for (int i = 0; i < int(sprimes.size()); ++i) { int p, next; tie(p, next) = sprimes[i]; if (p * p > N) break; for (; next < end; next += p) pblock[next] = 0; sprimes[i].second = next; }; for (int i = beg; i < end; ++i) if (pblock[i]) primes[psize++] = 2 * i + 1; } assert(psize <= int(primes.size())); primes.resize(psize); return primes; } int main() { u64 N; while (~scanf("%llu", &N)) { const auto pc = prime_counts(N + 1); u64 v = isqrt(N + 1); auto primes = prime_sieve(v + 10); std::vector<int> isp(v + 1, -1); auto count = [&] (u64 n) -> u64 { if (n <= v) return pc.first[n]; else { size_t i = N / (n - 1); u64 q = (N + 1) / i; assert(q <= n && n <= q + 1); if (q == n || (n >= 4 && n % 2 == 0)) return pc.second[i]; if (isp[i] < 0) { isp[i] = 1; for (size_t j = 1; j < primes.size(); ++j) { u64 p = primes[j]; if (p * p > n) break; if (n % p != 0) continue; isp[i] = 0; break; } } return pc.second[i] + isp[i]; } }; function<u64(u64, size_t)> rec = [&] (u64 phi, size_t beg) -> u64 { u64 ret = count(phi + 1) - beg; for (size_t i = beg; i < primes.size(); ++i) { u64 p = primes[i]; if ((p - 1) * p > phi) break; u64 nphi = phi / (p - 1); while (nphi + 1 > u64(primes[i])) { ret += rec(nphi, i + 1) + 1; nphi /= p; } } return ret; }; u64 ans = rec(N, 0) + 1; printf("%llu\n", ans); } return 0; }