結果
| 問題 |
No.1322 Totient Bound
|
| コンテスト | |
| ユーザー |
Min_25
|
| 提出日時 | 2020-12-19 12:55:14 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 339 ms / 5,000 ms |
| コード長 | 5,676 bytes |
| コンパイル時間 | 1,361 ms |
| コンパイル使用メモリ | 91,188 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-21 10:12:09 |
| 合計ジャッジ時間 | 7,266 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 36 |
ソースコード
#include <cstdio>
#include <ctime>
#include <cassert>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <map>
#include <vector>
#include <tuple>
#include <array>
#include <functional>
using namespace std;
using u8 = unsigned char;
using i64 = long long;
using u64 = long long unsigned;
int isqrt(i64 n) {
return sqrtl(n);
}
i64 divide(i64 n, i64 d) {
return double(n) / d;
}
__attribute__((target("avx"), optimize("O3", "unroll-loops")))
pair< vector<int>, vector<i64> > prime_counts(const i64 N) {
const int v = isqrt(N);
vector<int> smalls(v + 1);
vector<i64> larges(v + 1);
for (int i = 1; i <= v; ++i) smalls[i] = i - 1;
for (int i = 1; i <= v; ++i) larges[i] = N / i - 1;
for (int p = 2, pcnt = 0; p <= v; ++p) if (smalls[p] > smalls[p - 1]) {
const i64 M = N / p, q = i64(p) * p;
const int w = v / p, l = min<i64>(v, N / q);
for (int i = 1; i <= w; ++i) larges[i] -= larges[i * p] - pcnt;
const int t = min(isqrt(M), l);
for (int i = w + 1; i <= t; ++i) larges[i] -= smalls[divide(M, i)] - pcnt;
for (int i = l, j = M / l; i > t; ++j) {
int c = smalls[j];
while (j + 1 <= v && smalls[j + 1] == c) ++j;
c -= pcnt;
for (int e = max<int>(t, divide(M, j + 1)); i > e; --i) larges[i] -= c;
}
for (int i = v, j = v / p; j >= p; --j) {
const int c = smalls[j] - pcnt;
for (int e = j * p; i >= e; --i) smalls[i] -= c;
}
++pcnt;
}
return make_pair(smalls, larges);
}
using u8 = unsigned char;
vector<int> prime_sieve(int N) {
if (N <= 1) return vector<int>();
const int sieve_size = 32 << 10;
static u8 block[sieve_size];
const int v = sqrt(N), vv = sqrt(v);
vector<bool> is_prime(v + 1, 1);
vector<pair<int, int>> sprimes;
for (int i = 2; i <= vv; ++i) if (is_prime[i]) {
for (int j = i * i; j <= v; j += i) is_prime[j] = 0;
}
for (int i = 3; i <= v; i += 2) if (is_prime[i]) sprimes.emplace_back(i, i * i / 2);
const int rsize = N > 60184 ? N / (log(N) - 1.1)
: max(1., N / (log(N) - 1.11)) + 1;
vector<int> primes(1, 2); primes.resize(rsize);
int psize = 1;
auto* pblock = block - 1;
for (int beg = 1; beg < (N + 1) / 2; beg += sieve_size, pblock -= sieve_size) {
int end = min(beg + sieve_size, (N + 1) / 2);
fill(block, block + sieve_size, 1);
for (int i = 0; i < int(sprimes.size()); ++i) {
int p, next; tie(p, next) = sprimes[i];
if (p * p > N) break;
for (; next < end; next += p) pblock[next] = 0;
sprimes[i].second = next;
};
for (int i = beg; i < end; ++i) if (pblock[i]) primes[psize++] = 2 * i + 1;
}
assert(psize <= int(primes.size()));
primes.resize(psize);
return primes;
}
__attribute__((target("avx"), optimize("O3", "unroll-loops")))
i64 prime_pi(const i64 N) {
if (N <= 1) return 0;
if (N == 2) return 1;
const int v = isqrt(N);
int s = (v + 1) / 2;
vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i;
vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
vector<i64> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2;
vector<bool> skip(v + 1);
const auto divide = [] (i64 n, i64 d) -> int { return double(n) / d; };
const auto half = [] (int n) -> int { return (n - 1) >> 1; };
int pc = 0;
for (int p = 3; p <= v; p += 2) if (!skip[p]) {
int q = p * p;
if (i64(q) * q > N) break;
skip[p] = true;
for (int i = q; i <= v; i += 2 * p) skip[i] = true;
int ns = 0;
for (int k = 0; k < s; ++k) {
int i = roughs[k];
if (skip[i]) continue;
i64 d = i64(i) * p;
larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc;
roughs[ns++] = i;
}
s = ns;
for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
int c = smalls[j >> 1] - pc;
for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c;
}
++pc;
}
larges[0] += i64(s + 2 * (pc - 1)) * (s - 1) / 2;
for (int k = 1; k < s; ++k) larges[0] -= larges[k];
for (int l = 1; l < s; ++l) {
int q = roughs[l];
i64 M = N / q;
int e = smalls[half(M / q)] - pc;
if (e < l + 1) break;
i64 t = 0;
for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))];
larges[0] += t - i64(e - l) * (pc + l - 1);
}
return larges[0] + 1;
}
int main() {
u64 N;
while (~scanf("%llu", &N)) {
const auto pc = prime_counts(N + 1);
u64 v = isqrt(N + 1);
auto primes = prime_sieve(v + 10);
std::vector<int> isp(v + 1, -1);
auto count = [&] (u64 n) -> u64 {
if (n <= v) return pc.first[n];
else {
size_t i = N / (n - 1); u64 q = (N + 1) / i;
assert(q <= n && n <= q + 1);
if (q == n || (n >= 4 && n % 2 == 0)) {
return (i > v) ? pc.first[q] : pc.second[i];
}
if (isp[i] < 0) {
isp[i] = 1;
for (size_t j = 1; j < primes.size(); ++j) {
u64 p = primes[j];
if (p * p > n) break;
if (n % p != 0) continue;
isp[i] = 0;
break;
}
}
return pc.second[i] + isp[i];
}
};
function<u64(u64, size_t)> rec = [&] (u64 phi, size_t beg) -> u64 {
u64 ret = count(phi + 1) - beg;
for (size_t i = beg; i < primes.size(); ++i) {
u64 p = primes[i];
if ((p - 1) * p > phi) break;
u64 nphi = phi / (p - 1);
while (nphi + 1 > u64(primes[i])) {
ret += rec(nphi, i + 1) + 1;
nphi /= p;
}
}
return ret;
};
u64 ans = rec(N, 0) + 1;
printf("%llu\n", ans);
}
return 0;
}
Min_25