結果

問題 No.1322 Totient Bound
ユーザー 👑 hos.lyric
提出日時 2020-12-19 13:03:29
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,364 ms / 5,000 ms
コード長 4,285 bytes
コンパイル時間 1,028 ms
コンパイル使用メモリ 102,644 KB
実行使用メモリ 7,864 KB
最終ジャッジ日時 2024-09-21 10:12:57
合計ジャッジ時間 22,723 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
// floor(sqrt(a))
long long floorSqrt(long long a) {
long long b = a, x = 0, y = 0;
for (int e = (63 - __builtin_clzll(a)) & ~1; e >= 0; e -= 2) {
x <<= 1;
y <<= 1;
if (b >= (y | 1) << e) {
b -= (y | 1) << e;
x |= 1;
y += 2;
}
}
return x;
}
constexpr int LIM = 100'010;
Int N;
Int sqrtN;
bool isPrime[LIM];
Int primesLen;
Int primes[LIM];
Int small[LIM], large[LIM], large1[LIM];
Int SMALL[LIM], LARGE[LIM];
Int ans;
Int get(Int n) {
if (n <= sqrtN + 1) return small[n];
if (n <= N) {
const Int l = N / n;
if (n == N / l) return large[l];
}
return large1[N / (n - 1)];
}
int main() {
for (; ~scanf("%lld", &N); ) {
sqrtN = floorSqrt(N + 1);
fill(isPrime + 2, isPrime + sqrtN + 1 + 1, true);
fill(small, small + sqrtN + 1 + 1, 0);
fill(large, large + sqrtN + 1, 0);
fill(large1, large1 + sqrtN + 1, 0);
fill(SMALL, SMALL + sqrtN + 1, 0);
fill(LARGE, LARGE + sqrtN + 1, 0);
primesLen = 0;
for (Int n = 1; n <= sqrtN + 1; ++n) small[n] = n;
for (Int l = 1; l <= sqrtN; ++l) large[l] = N / l;
for (Int l = 1; l <= sqrtN; ++l) large1[l] = N / l + 1;
for (Int p = 2; p <= sqrtN + 1; ++p) {
if (isPrime[p]) {
primes[primesLen++] = p;
const Int p2 = p * p;
for (Int n = p2; n <= sqrtN + 1; n += p) isPrime[n] = false;
const Int g1 = small[p - 1];
for (Int l = 1; l <= sqrtN; ++l) {
Int n = N / l + 1;
if (n < p2) break;
large1[l] -= (get(n / p) - g1);
--n;
if (n < p2) break;
large[l] -= (get(n / p) - g1);
}
for (Int n = sqrtN + 1; n >= 1; --n) {
if (n < p2) break;
small[n] -= (small[n / p] - g1);
}
}
}
for (Int n = 1; n <= sqrtN + 1; ++n) small[n] -= 1;
for (Int l = 1; l <= sqrtN; ++l) large[l] -= 1;
for (Int l = 1; l <= sqrtN; ++l) large1[l] -= 1;
// cerr<<"sqrtN = "<<sqrtN<<endl;
// cerr<<"primes = ";pv(primes,primes+primesLen);
// cerr<<"small = ";pv(small,small+sqrtN+1+1);
// cerr<<"large = ";pv(large,large+sqrtN+1);
// cerr<<"large1 = ";pv(large1,large1+sqrtN+1);
// cerr<<"SMALL = ";pv(SMALL,SMALL+sqrtN+1);
// cerr<<"LARGE = ";pv(LARGE,LARGE+sqrtN+1);
Int limBef = N + 1;
for (Int i = primesLen; i--; ) {
const Int p = primes[i];
auto GET = [&](Int n) {
if (n <= sqrtN) {
return (n >= limBef) ? SMALL[n] : (max(small[n + 1] - (i + 1), 0LL) + 1);
} else {
const int l = N / n;
return (n >= limBef) ? LARGE[l] : (max(large1[l] - (i + 1), 0LL) + 1);
}
};
const Int lim = p * (p - 1);
for (Int l = 1; l <= sqrtN; ++l) {
const Int n = N / l;
if (n < lim) break;
if (n < limBef) LARGE[l] = GET(n);
for (Int m = n / (p - 1); m > 0; m /= p) {
LARGE[l] += GET(m);
}
}
for (Int n = sqrtN; n >= 1; --n) {
if (n < lim) break;
if (n < limBef) SMALL[n] = GET(n);
for (Int m = n / (p - 1); m > 0; m /= p) {
SMALL[n] += GET(m);
}
}
limBef = lim;
// cerr<<"p = "<<p<<endl;
// cerr<<"SMALL = ";pv(SMALL,SMALL+sqrtN+1);
// cerr<<"LARGE = ";pv(LARGE,LARGE+sqrtN+1);
}
const Int ans = (N >= limBef) ? LARGE[1] : (large1[1] + 1);
printf("%lld\n", ans);
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0