結果

問題 No.1322 Totient Bound
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-12-20 18:57:06
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 799 ms / 5,000 ms
コード長 31,820 bytes
コンパイル時間 3,681 ms
コンパイル使用メモリ 311,480 KB
実行使用メモリ 35,304 KB
最終ジャッジ日時 2024-09-21 12:04:50
合計ジャッジ時間 17,288 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 3 ms
6,940 KB
testcase_14 AC 3 ms
6,940 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 3 ms
6,940 KB
testcase_18 AC 127 ms
10,672 KB
testcase_19 AC 214 ms
11,096 KB
testcase_20 AC 568 ms
22,316 KB
testcase_21 AC 673 ms
22,584 KB
testcase_22 AC 630 ms
22,576 KB
testcase_23 AC 762 ms
35,212 KB
testcase_24 AC 785 ms
35,124 KB
testcase_25 AC 783 ms
35,248 KB
testcase_26 AC 770 ms
35,152 KB
testcase_27 AC 772 ms
35,132 KB
testcase_28 AC 784 ms
35,252 KB
testcase_29 AC 799 ms
35,160 KB
testcase_30 AC 2 ms
6,940 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 782 ms
35,304 KB
testcase_34 AC 776 ms
35,116 KB
testcase_35 AC 773 ms
35,104 KB
testcase_36 AC 769 ms
35,304 KB
testcase_37 AC 775 ms
35,140 KB
testcase_38 AC 791 ms
35,292 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:478:7: warning: 'template<class _Category, class _Tp, class _Distance, class _Pointer, class _Reference> struct std::iterator' is deprecated [-Wdeprecated-declarations]
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:65,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/algorithm:60,
                 from main.cpp:11:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_iterator_base_types.h:127:34: note: declared here
  127 |     struct _GLIBCXX17_DEPRECATED iterator
      |                                  ^~~~~~~~
main.cpp:480:7: warning: 'template<class _Category, class _Tp, class _Distance, class _Pointer, class _Reference> struct std::iterator' is deprecated [-Wdeprecated-declarations]
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_iterator_base_types.h:127:34: note: declared here
  127 |     struct _GLIBCXX17_DEPRECATED iterator
      |                                  ^~~~~~~~

ソースコード

diff #

/**
 *  date : 2020-12-20 18:56:59
 */

#define NDEBUG
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <forward_list>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <locale>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <ratio>
#include <regex>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <system_error>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <valarray>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  T &x() { return first; }
  const T &x() const { return first; }
  U &y() { return second; }
  const U &y() const { return second; }

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}
template <typename T, size_t N>
void mem(T (&a)[N], int c) {
  memset(a, c, sizeof(T) * N);
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<T> reord(const vector<T> &v, const vector<T> &ord) {
  int N = v.size();
  vector<T> ret(N);
  for (int i = 0; i < N; i++) ret[i] = v[ord[i]];
  return ret;
};

template <typename T = int>
vector<T> mkiota(int N) {
  vector<T> ret(N);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
vector<int> mkinv(vector<T> &v, int max_val = -1) {
  if (max_val < (int)v.size()) max_val = v.size() - 1;
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

}  // namespace Nyaan

// bit operation
namespace Nyaan {

__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}

__attribute__((target("bmi"))) inline int lsb(const u64 &a) {
  return _tzcnt_u64(a);
}
__attribute__((target("bmi"))) inline int ctz(const u64 &a) {
  return _tzcnt_u64(a);
}

__attribute__((target("lzcnt"))) inline int msb(const u64 &a) {
  return 63 - _lzcnt_u64(a);
}
__attribute__((target("lzcnt"))) inline int clz64(const u64 &a) {
  return _lzcnt_u64(a);
}

template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  a ^= (gbit(a, i) == b ? 0 : (T(b) << i));
}

constexpr long long PW(int n) { return 1LL << n; }

constexpr long long MSK(int n) { return (1LL << n) - 1; }

}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

void outr() {}
template <typename T, class... U, char sep = ' '>
void outr(const T &t, const U &... u) {
  cout << t;
  outr(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if (is_signed<T>::value)
    if (t == -Nyaan::inf) res = "-inf";
  if (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if (is_signed<T>::value)
      if (t == -Nyaan::infLL) res = "-inf";
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...)
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define repc(i, a, cond) for (long long i = (a); (cond); i++)
#define enm(i, val, vec)                                  \
  for (long long i = 0; i < (long long)(vec).size(); i++) \
    if (auto& val = vec[i]; false)                        \
      ;                                                   \
    else

#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define inc(...)    \
  char __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }

#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//

namespace HashMapImpl {
using u32 = uint32_t;
using u64 = uint64_t;

template <typename Key, typename Data>
struct HashMapBase;

template <typename Key, typename Data>
struct itrB
    : iterator<bidirectional_iterator_tag, Data, ptrdiff_t, Data*, Data&> {
  using base =
      iterator<bidirectional_iterator_tag, Data, ptrdiff_t, Data*, Data&>;
  using ptr = typename base::pointer;
  using ref = typename base::reference;

  u32 i;
  HashMapBase<Key, Data>* p;

  explicit constexpr itrB() : i(0), p(nullptr) {}
  explicit constexpr itrB(u32 _i, HashMapBase<Key, Data>* _p) : i(_i), p(_p) {}
  explicit constexpr itrB(u32 _i, const HashMapBase<Key, Data>* _p)
      : i(_i), p(const_cast<HashMapBase<Key, Data>*>(_p)) {}
  friend void swap(itrB& l, itrB& r) { swap(l.i, r.i), swap(l.p, r.p); }
  friend bool operator==(const itrB& l, const itrB& r) { return l.i == r.i; }
  friend bool operator!=(const itrB& l, const itrB& r) { return l.i != r.i; }
  const ref operator*() const {
    return const_cast<const HashMapBase<Key, Data>*>(p)->data[i];
  }
  ref operator*() { return p->data[i]; }
  ptr operator->() const { return &(p->data[i]); }

  itrB& operator++() {
    assert(i != p->cap && "itr::operator++()");
    do {
      i++;
      if (i == p->cap) break;
      if (p->flag[i] == true && p->dflag[i] == false) break;
    } while (true);
    return (*this);
  }
  itrB operator++(int) {
    itrB it(*this);
    ++(*this);
    return it;
  }
  itrB& operator--() {
    do {
      i--;
      if (p->flag[i] == true && p->dflag[i] == false) break;
      assert(i != 0 && "itr::operator--()");
    } while (true);
    return (*this);
  }
  itrB operator--(int) {
    itrB it(*this);
    --(*this);
    return it;
  }
};

template <typename Key, typename Data>
struct HashMapBase {
  using u32 = uint32_t;
  using u64 = uint64_t;
  using iterator = itrB<Key, Data>;
  using itr = iterator;

 protected:
  template <typename K,
            enable_if_t<is_same<K, Key>::value, nullptr_t> = nullptr,
            enable_if_t<is_integral<K>::value, nullptr_t> = nullptr>
  inline u32 inner_hash(const K& key) const {
    return u32((u64(key ^ r) * 11995408973635179863ULL) >> shift);
  }
  template <
      typename K, enable_if_t<is_same<K, Key>::value, nullptr_t> = nullptr,
      enable_if_t<is_integral<decltype(K::first)>::value, nullptr_t> = nullptr,
      enable_if_t<is_integral<decltype(K::second)>::value, nullptr_t> = nullptr>
  inline u32 inner_hash(const K& key) const {
    u64 a = key.first ^ r;
    u64 b = key.second ^ r;
    a *= 11995408973635179863ULL;
    b *= 10150724397891781847ULL;
    return u32((a + b) >> shift);
  }
  template <typename D = Data,
            enable_if_t<is_same<D, Key>::value, nullptr_t> = nullptr>
  inline u32 hash(const D& dat) const {
    return inner_hash(dat);
  }
  template <
      typename D = Data,
      enable_if_t<is_same<decltype(D::first), Key>::value, nullptr_t> = nullptr>
  inline u32 hash(const D& dat) const {
    return inner_hash(dat.first);
  }

  template <typename D = Data,
            enable_if_t<is_same<D, Key>::value, nullptr_t> = nullptr>
  inline Key dtok(const D& dat) const {
    return dat;
  }
  template <
      typename D = Data,
      enable_if_t<is_same<decltype(D::first), Key>::value, nullptr_t> = nullptr>
  inline Key dtok(const D& dat) const {
    return dat.first;
  }

  void reallocate(u32 ncap) {
    vector<Data> ndata(ncap);
    vector<bool> nf(ncap);
    shift = 64 - __lg(ncap);
    for (u32 i = 0; i < cap; i++) {
      if (flag[i] == true && dflag[i] == false) {
        u32 h = hash(data[i]);
        while (nf[h]) h = (h + 1) & (ncap - 1);
        ndata[h] = data[i];
        nf[h] = true;
      }
    }
    data.swap(ndata);
    flag.swap(nf);
    cap = ncap;
    dflag.resize(cap);
    fill(std::begin(dflag), std::end(dflag), false);
  }

  inline bool extend_rate(u32 x) const { return x * 2 >= cap; }

  inline bool shrink_rate(u32 x) const {
    return HASHMAP_DEFAULT_SIZE < cap && x * 10 <= cap;
  }

  inline void extend() { reallocate(cap << 1); }

  inline void shrink() { reallocate(cap >> 1); }

 public:
  u32 cap, s;
  vector<Data> data;
  vector<bool> flag, dflag;
  u32 shift;
  static u64 r;
  static constexpr uint32_t HASHMAP_DEFAULT_SIZE = 4;

  explicit HashMapBase()
      : cap(HASHMAP_DEFAULT_SIZE),
        s(0),
        data(cap),
        flag(cap),
        dflag(cap),
        shift(64 - __lg(cap)) {}

  itr begin() const {
    u32 h = 0;
    while (h != cap) {
      if (flag[h] == true && dflag[h] == false) break;
      h++;
    }
    return itr(h, this);
  }
  itr end() const { return itr(this->cap, this); }

  friend itr begin(const HashMapBase& h) { return h.begin(); }
  friend itr end(const HashMapBase& h) { return h.end(); }

  itr find(const Key& key) const {
    u32 h = inner_hash(key);
    while (true) {
      if (flag[h] == false) return this->end();
      if (dtok(data[h]) == key) {
        if (dflag[h] == true) return this->end();
        return itr(h, this);
      }
      h = (h + 1) & (cap - 1);
    }
  }

  bool contain(const Key& key) const { return find(key) != this->end(); }

  itr insert(const Data& d) {
    u32 h = hash(d);
    while (true) {
      if (flag[h] == false) {
        if (extend_rate(s + 1)) {
          extend();
          h = hash(d);
          continue;
        }
        data[h] = d;
        flag[h] = true;
        ++s;
        return itr(h, this);
      }
      if (dtok(data[h]) == dtok(d)) {
        if (dflag[h] == true) {
          data[h] = d;
          dflag[h] = false;
          ++s;
        }
        return itr(h, this);
      }
      h = (h + 1) & (cap - 1);
    }
  }

  // tips for speed up :
  // if return value is unnecessary, make argument_2 false.
  itr erase(itr it, bool get_next = true) {
    if (it == this->end()) return this->end();
    s--;
    if (shrink_rate(s)) {
      Data d = data[it.i];
      shrink();
      it = find(dtok(d));
    }
    int ni = (it.i + 1) & (cap - 1);
    if (this->flag[ni]) {
      this->dflag[it.i] = true;
    } else {
      this->flag[it.i] = false;
    }
    if (get_next) ++it;
    return it;
  }

  itr erase(const Key& key) { return erase(find(key)); }

  bool empty() const { return s == 0; }

  int size() const { return s; }

  void clear() {
    fill(std::begin(flag), std::end(flag), false);
    fill(std::begin(dflag), std::end(dflag), false);
    s = 0;
  }

  void reserve(int n) {
    if (n <= 0) return;
    n = 1 << min(23, __lg(n) + 2);
    if (cap < u32(n)) reallocate(n);
  }
};

template <typename Key, typename Data>
uint64_t HashMapBase<Key, Data>::r =
    chrono::duration_cast<chrono::nanoseconds>(
        chrono::high_resolution_clock::now().time_since_epoch())
        .count();

}  // namespace HashMapImpl

/**
 * @brief Hash Map(base) (ハッシュマップ・基底クラス)
 */

template <typename Key, typename Val>
struct HashMap : HashMapImpl::HashMapBase<Key, pair<Key, Val>> {
  using base = typename HashMapImpl::HashMapBase<Key, pair<Key, Val>>;
  using HashMapImpl::HashMapBase<Key, pair<Key, Val>>::HashMapBase;
  using Data = pair<Key, Val>;

  Val& operator[](const Key& k) {
    typename base::u32 h = base::inner_hash(k);
    while (true) {
      if (base::flag[h] == false) {
        if (base::extend_rate(base::s + 1)) {
          base::extend();
          h = base::hash(k);
          continue;
        }
        base::data[h].first = k;
        base::data[h].second = Val();
        base::flag[h] = true;
        ++base::s;
        return base::data[h].second;
      }
      if (base::data[h].first == k) {
        if (base::dflag[h] == true) base::data[h].second = Val();
        return base::data[h].second;
      }
      h = (h + 1) & (base::cap - 1);
    }
  }

  typename base::itr emplace(const Key& key, const Val& val) {
    return base::insert(Data(key, val));
  }
};

/* 
 * @brief ハッシュマップ(連想配列)
 * @docs docs/hashmap/hashmap.md
**/




pair<vector<long long>, vector<long long>> pi_table(long long N) {
  using i64 = long long;
  vector<i64> ns{0};
  for (i64 i = N; i > 0; i = N / (N / i + 1)) ns.push_back(i);
  vector<i64> h(ns);
  for (auto &x : h) --x;
  for (i64 x = 2, sq = sqrtl(N), nsz = ns.size(); x <= sq; ++x) {
    if (h[nsz - x] == h[nsz - x + 1]) continue;
    i64 x2 = x * x, pi = h[nsz - x + 1];
    for (i64 i = 1, n = ns[i]; i < nsz && n >= x2; n = ns[++i])
      h[i] -= h[i * x <= sq ? i * x : nsz - n / x] - pi;
  }
  return {ns, h};
}

long long prime_counting(long long N) {
  if (N < 2) return 0;
  return pi_table(N).second[1];
}

/**
 * @brief 素数カウント( $\mathrm{O}(\frac{N^{\frac{3}{4}}}{\log N})$ )
 * @docs docs/multiplicative-function/prime-counting.md
 */



namespace inner {

using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;

template <typename T>
T gcd(T a, T b) {
  while (b) swap(a %= b, b);
  return a;
}

template <typename T>
T inv(T a, T p) {
  T b = p, x = 1, y = 0;
  while (a) {
    T q = b / a;
    swap(a, b %= a);
    swap(x, y -= q * x);
  }
  assert(b == 1);
  return y < 0 ? y + p : y;
}

template <typename T, typename U>
T modpow(T a, U n, T p) {
  T ret = 1 % p;
  for (; n; n >>= 1, a = U(a) * a % p)
    if (n & 1) ret = U(ret) * a % p;
  return ret;
}

}  // namespace inner

namespace my_rand {

// [0, 2^64 - 1)
uint64_t rng() {
  static uint64_t x_ =
      uint64_t(chrono::duration_cast<chrono::nanoseconds>(
                   chrono::high_resolution_clock::now().time_since_epoch())
                   .count()) *
      10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

// [l, r)
int64_t randint(int64_t l, int64_t r) {
  assert(l < r);
  return l + rng() % (r - l);
}

// choose n numbers from [l, r) without overlapping
vector<int64_t> randset(int64_t l, int64_t r, int64_t n) {
  assert(l <= r && n <= r - l);
  unordered_set<int64_t> s;
  for (int64_t i = n; i; --i) {
    int64_t m = randint(l, r + 1 - i);
    if (s.find(m) != s.end()) m = r - i;
    s.insert(m);
  }
  vector<int64_t> ret;
  for (auto& x : s) ret.push_back(x);
  return ret;
}

// [0.0, 1.0)
double rnd() {
  union raw_cast {
    double t;
    uint64_t u;
  };
  constexpr uint64_t p = uint64_t(1023 - 64) << 52;
  return rng() * ((raw_cast*)(&p))->t;
}

template <typename T>
void randshf(vector<T>& v) {
  int n = v.size();
  for (int loop = 0; loop < 2; loop++)
    for (int i = 0; i < n; i++) swap(v[i], v[randint(0, n)]);
}

}  // namespace my_rand

using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;



struct ArbitraryLazyMontgomeryModInt {
  using mint = ArbitraryLazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static u32 mod;
  static u32 r;
  static u32 n2;

  static u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static void set_mod(u32 m) {
    assert(m < (1 << 30));
    assert((m & 1) == 1);
    mod = m;
    n2 = -u64(m) % m;
    r = get_r();
    assert(r * mod == 1);
  }

  u32 a;

  ArbitraryLazyMontgomeryModInt() : a(0) {}
  ArbitraryLazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }
  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint() - mint(*this); }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = ArbitraryLazyMontgomeryModInt(t);
    return (is);
  }

  mint inverse() const { return pow(mod - 2); }

  u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static u32 get_mod() { return mod; }
};
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2;



struct montgomery64 {
  using mint = montgomery64;
  using i64 = int64_t;
  using u64 = uint64_t;
  using u128 = __uint128_t;

  static u64 mod;
  static u64 r;
  static u64 n2;

  static u64 get_r() {
    u64 ret = mod;
    for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static void set_mod(u64 m) {
    assert(m < (1LL << 62));
    assert((m & 1) == 1);
    mod = m;
    n2 = -u128(m) % m;
    r = get_r();
    assert(r * mod == 1);
  }

  u64 a;

  montgomery64() : a(0) {}
  montgomery64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){};

  static u64 reduce(const u128 &b) {
    return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
  }

  mint &operator+=(const mint &b) {
    if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator-=(const mint &b) {
    if (i64(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator*=(const mint &b) {
    a = reduce(u128(a) * b.a);
    return *this;
  }

  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }
  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint() - mint(*this); }

  mint pow(u128 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = montgomery64(t);
    return (is);
  }

  mint inverse() const { return pow(mod - 2); }

  u64 get() const {
    u64 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static u64 get_mod() { return mod; }
};
typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;

namespace fast_factorize {
using u64 = uint64_t;

template <typename mint>
bool miller_rabin(u64 n, vector<u64> as) {
  if (mint::get_mod() != n) mint::set_mod(n);
  u64 d = n - 1;
  while (~d & 1) d >>= 1;
  mint e{1}, rev{int64_t(n - 1)};
  for (u64 a : as) {
    if (n <= a) break;
    u64 t = d;
    mint y = mint(a).pow(t);
    while (t != n - 1 && y != e && y != rev) {
      y *= y;
      t *= 2;
    }
    if (y != rev && t % 2 == 0) return false;
  }
  return true;
}

bool is_prime(u64 n) {
  if (~n & 1) return n == 2;
  if (n <= 1) return false;
  if (n < (1LL << 30))
    return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, {2, 7, 61});
  else
    return miller_rabin<montgomery64>(
        n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}

template <typename mint, typename T>
T pollard_rho(T n) {
  if (~n & 1) return 2;
  if (is_prime(n)) return n;
  if (mint::get_mod() != n) mint::set_mod(n);
  mint R, one = 1;
  auto f = [&](mint x) { return x * x + R; };
  auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
  while (1) {
    mint x, y, ys, q = one;
    R = rnd_(), y = rnd_();
    T g = 1;
    constexpr int m = 128;
    for (int r = 1; g == 1; r <<= 1) {
      x = y;
      for (int i = 0; i < r; ++i) y = f(y);
      for (int k = 0; g == 1 && k < r; k += m) {
        ys = y;
        for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
        g = inner::gcd<T>(q.get(), n);
      }
    }
    if (g == n) do
        g = inner::gcd<T>((x - (ys = f(ys))).get(), n);
      while (g == 1);
    if (g != n) return g;
  }
  exit(1);
}

vector<u64> inner_factorize(u64 n) {
  if (n <= 1) return {};
  u64 p;
  if (n <= (1LL << 30))
    p = pollard_rho<ArbitraryLazyMontgomeryModInt, uint32_t>(n);
  else
    p = pollard_rho<montgomery64, uint64_t>(n);
  if (p == n) return {p};
  auto l = inner_factorize(p);
  auto r = inner_factorize(n / p);
  copy(begin(r), end(r), back_inserter(l));
  return l;
}

vector<u64> factorize(u64 n) {
  auto ret = inner_factorize(n);
  sort(begin(ret), end(ret));
  return ret;
}

using i64 = int64_t;

map<u64, i64> factor_count(u64 n) {
  map<u64, i64> mp;
  for (auto &x : factorize(n)) mp[x]++;
  return mp;
}

vector<u64> divisors(u64 n) {
  if (n == 0) return {};
  vector<pair<u64, i64>> v;
  for (auto &p : factor_count(n)) v.push_back(p);
  vector<u64> ret;
  auto f = [&](auto rec, int i, u64 x) -> void {
    if (i == (int)v.size()) {
      ret.push_back(x);
      return;
    }
    for (int j = v[i].second;; --j) {
      rec(rec, i + 1, x);
      if (j == 0) break;
      x *= v[i].first;
    }
  };
  f(f, 0, 1);
  sort(begin(ret), end(ret));
  return ret;
}

}  // namespace fast_factorize

using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
using fast_factorize::is_prime;

/**
 * @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
 * @docs docs/prime/fast-factorize.md
 */


// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<int> prime_enumerate(int N) {
  vector<bool> sieve(N / 3 + 1, 1);
  for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {
    if (!sieve[i]) continue;
    for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,
             qe = sieve.size();
         q < qe; q += r = s - r)
      sieve[q] = 0;
  }
  vector<int> ret{2, 3};
  for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)
    if (sieve[i]) ret.push_back(p);
  while (!ret.empty() && ret.back() > N) ret.pop_back();
  return ret;
}


// Prime -> {0, 0, 1, 1, 0, 1, 0, 1, ...}
vector<bool> prime_sieve(int N) {
  vector<bool> sieve(max(1, N) + 1, 1);
  sieve[0] = sieve[1] = false;
  for (int i = 2; i * i <= N; i++)
    if (sieve[i] == true)
      for (int j = i * i; j <= N; j += i) sieve[j] = false;
  return sieve;
}

//
using namespace Nyaan;

// 関連(?):dfsを使用した乗法的関数のprefix sumの計算
// http://baihacker.github.io/main/2020/The_prefix-sum_of_multiplicative_function_the_black_algorithm.html

using i64 = long long;
i64 N, ans;
vector<i64> ps;
HashMap<i64, i64> Pi;
i64 fast_div(i64 a, i64 b) { return double(a) / b; }

void init() {
  i64 sq = sqrt(N);
  assert(N > 0);
  ans = 0;
  // ps
  auto prime = prime_enumerate(sq + 10);
  for (auto& x : prime) ps.push_back(x);
  // Pi
  auto&& [ns, _pi] = pi_table(N);
  trc(ns, _pi);
  i64 s = sz(ns);
  for (int i = 1; i < s; i++) {
    Pi[ns[i]] = _pi[i];
    if (Pi.find(ns[i] + 1) == Pi.end())
      Pi[ns[i] + 1] = _pi[i] + is_prime(ns[i] + 1);
  }
}

/**
 * 現在n = (v * ps[i] ^ c)のノードにいる
 * tot = totient(n)
 */

void dfs(int i, int c, i64 tot) {
  // v * ps[i] ^ (c + 1)を処理
  ans++;
  // ps[i]倍の子に進んで良ければ進む
  if (tot * ps[i] * ps[i] <= N) dfs(i, c + 1, tot * ps[i]);
  // ps[i+1]倍~上限の子を計算
  // 上限は? -> (N / tot) + 1以下
  
  if (Pi.find(ps[i]) == Pi.end()) {
    trc(i, c, tot, ps[i]);
    exit(1);
  }
  if (Pi.find(N / tot + 1) == Pi.end()) {
    trc(i, c, tot, N / tot + 1);
    exit(1);
  }
  ans += Pi[N / tot + 1] - Pi[ps[i]];
  // 進んでよいノードに進む
  for (int j = i + 1; j < (int)ps.size(); j++) {
    if (tot * (ps[j] - 1) * ps[j] > N) break;
    dfs(j, 1, tot * (ps[j] - 1));
  }
}

i64 run() {
  // 1の場合
  ans = 1;
  // 素数の場合を考えると? -> N + 1以下の素数がオーケー
  ans += Pi[N + 1];
  // 各素数を根としてDFSを開始する
  for (int i = 0; i < (int)ps.size(); i++) {
    i64 p = ps[i];
    // tot(p^2)
    if (p * (p - 1) > N) break;
    dfs(i, 1, p - 1);
  }
  return ans;
}

void Nyaan::solve() {
  in(N);
  init();
  out(run());
}
0