結果
問題 | No.1328 alligachi-problem |
ユーザー | くれちー |
提出日時 | 2020-12-25 02:03:20 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 192 ms / 2,000 ms |
コード長 | 10,292 bytes |
コンパイル時間 | 15,716 ms |
コンパイル使用メモリ | 383,612 KB |
実行使用メモリ | 27,164 KB |
最終ジャッジ日時 | 2024-09-21 17:26:12 |
合計ジャッジ時間 | 22,598 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,812 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 1 ms
6,944 KB |
testcase_09 | AC | 192 ms
27,164 KB |
testcase_10 | AC | 106 ms
26,192 KB |
testcase_11 | AC | 189 ms
26,156 KB |
testcase_12 | AC | 188 ms
26,172 KB |
testcase_13 | AC | 187 ms
26,112 KB |
testcase_14 | AC | 190 ms
26,160 KB |
testcase_15 | AC | 102 ms
26,092 KB |
testcase_16 | AC | 183 ms
26,120 KB |
testcase_17 | AC | 178 ms
26,244 KB |
testcase_18 | AC | 187 ms
26,328 KB |
testcase_19 | AC | 186 ms
26,176 KB |
testcase_20 | AC | 179 ms
26,088 KB |
testcase_21 | AC | 183 ms
26,328 KB |
testcase_22 | AC | 184 ms
26,108 KB |
testcase_23 | AC | 99 ms
26,096 KB |
testcase_24 | AC | 144 ms
26,116 KB |
testcase_25 | AC | 99 ms
26,268 KB |
testcase_26 | AC | 125 ms
17,296 KB |
testcase_27 | AC | 125 ms
17,300 KB |
ソースコード
// The main code is at the very bottom. #[allow(unused_imports)] use { lib::byte::ByteChar, std::cell::{Cell, RefCell}, std::cmp::{ self, Ordering::{self, *}, Reverse, }, std::collections::*, std::convert::identity, std::fmt::{self, Debug, Display, Formatter}, std::io::prelude::*, std::iter::{self, FromIterator}, std::marker::PhantomData, std::mem, std::num::Wrapping, std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive}, std::process, std::rc::Rc, std::thread, std::time::{Duration, Instant}, std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize}, }; #[allow(unused_imports)] #[macro_use] pub mod lib { pub mod byte { pub use self::byte_char::*; mod byte_char { use std::error::Error; use std::fmt::{self, Debug, Display, Formatter}; use std::str::FromStr; #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] #[repr(transparent)] pub struct ByteChar(pub u8); impl Debug for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "b'{}'", self.0 as char) } } impl Display for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{}", self.0 as char) } } impl FromStr for ByteChar { type Err = ParseByteCharError; fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> { match s.as_bytes().len() { 1 => Ok(ByteChar(s.as_bytes()[0])), 0 => Err(ParseByteCharErrorKind::EmptyStr.into()), _ => Err(ParseByteCharErrorKind::TooManyBytes.into()), } } } #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub struct ParseByteCharError { kind: ParseByteCharErrorKind, } impl Display for ParseByteCharError { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.write_str(match self.kind { ParseByteCharErrorKind::EmptyStr => "empty string", ParseByteCharErrorKind::TooManyBytes => "too many bytes", }) } } impl Error for ParseByteCharError {} #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] enum ParseByteCharErrorKind { EmptyStr, TooManyBytes, } impl From<ParseByteCharErrorKind> for ParseByteCharError { fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError { ParseByteCharError { kind } } } } } pub mod io { pub use self::scanner::*; mod scanner { use std::io::{self, BufRead}; use std::iter; use std::str::FromStr; #[derive(Debug)] pub struct Scanner<R> { reader: R, buf: String, pos: usize, } impl<R: BufRead> Scanner<R> { pub fn new(reader: R) -> Self { Scanner { reader, buf: String::new(), pos: 0, } } pub fn next(&mut self) -> io::Result<&str> { let start = loop { match self.rest().find(|c| c != ' ') { Some(i) => break i, None => self.fill_buf()?, } }; self.pos += start; let len = self.rest().find(' ').unwrap_or(self.rest().len()); let s = &self.buf[self.pos..][..len]; // self.rest()[..len] self.pos += len; Ok(s) } pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>> where T: FromStr, { Ok(self.next()?.parse()) } pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>> where T: FromStr, { iter::repeat_with(|| self.parse_next()).take(n).collect() } pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>> where F: FnMut(u8) -> T, { Ok(self.next()?.bytes().map(&mut f).collect()) } pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>> where F: FnMut(u8) -> T, { iter::repeat_with(|| self.map_next_bytes(&mut f)) .take(n) .collect() } fn rest(&self) -> &str { &self.buf[self.pos..] } fn fill_buf(&mut self) -> io::Result<()> { self.buf.clear(); self.pos = 0; let read = self.reader.read_line(&mut self.buf)?; if read == 0 { return Err(io::ErrorKind::UnexpectedEof.into()); } if *self.buf.as_bytes().last().unwrap() == b'\n' { self.buf.pop(); } Ok(()) } } } } } #[allow(unused_macros)] macro_rules! eprint { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprint!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! eprintln { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprintln!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! dbg { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::dbg!($($arg)*) } else { ($($arg)*) } }; } const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024); const INTERACTIVE: bool = false; fn main() -> std::io::Result<()> { match CUSTOM_STACK_SIZE_MIB { Some(stack_size_mib) => std::thread::Builder::new() .name("run_solver".to_owned()) .stack_size(stack_size_mib * 1024 * 1024) .spawn(run_solver)? .join() .unwrap(), None => run_solver(), } } fn run_solver() -> std::io::Result<()> { let stdin = std::io::stdin(); let reader = stdin.lock(); let stdout = std::io::stdout(); let writer = stdout.lock(); macro_rules! with_wrapper { ($($wrapper:expr)?) => {{ let mut writer = $($wrapper)?(writer); solve(reader, &mut writer)?; writer.flush() }}; } if cfg!(debug_assertions) || INTERACTIVE { with_wrapper!() } else { with_wrapper!(std::io::BufWriter::new) } } fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()> where R: BufRead, W: Write, { let mut _scanner = lib::io::Scanner::new(reader); #[allow(unused_macros)] macro_rules! scan { ($T:ty) => { _scanner.parse_next::<$T>()?.unwrap() }; ($($T:ty),+) => { ($(scan!($T)),+) }; ($T:ty; $n:expr) => { _scanner.parse_next_n::<$T>($n)?.unwrap() }; ($($T:ty),+; $n:expr) => { iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) }) .take($n) .collect::<std::io::Result<Vec<_>>>()? }; } #[allow(unused_macros)] macro_rules! scan_bytes_map { ($f:expr) => { _scanner.map_next_bytes($f)? }; ($f:expr; $n:expr) => { _scanner.map_next_bytes_n($n, $f)? }; } #[allow(unused_macros)] macro_rules! print { ($($arg:tt)*) => { write!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! println { ($($arg:tt)*) => { writeln!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! answer { ($($arg:tt)*) => {{ println!($($arg)*); return Ok(()); }}; } { #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] enum Color { R, B, } fn parse_color(c: ByteChar) -> Color { match c.0 { b'R' => Color::R, b'B' => Color::B, _ => unreachable!(), } } let n = scan!(usize); let cxy = scan!(ByteChar, ByteChar, usize; n); let (mut cnt_r, mut cnt_b) = { let cnt = |color| { cxy .iter() .filter(|&&(c, _, _)| parse_color(c) == color) .count() }; (cnt(Color::R), cnt(Color::B)) }; let mut balls = HashMap::<(Color, Color, usize), Vec<usize>>::new(); for (i, &(c, x, y)) in cxy.iter().enumerate() { balls .entry((parse_color(c), parse_color(x), y)) .or_default() .push(i); } let mut ans = Vec::with_capacity(n); while cnt_r > 0 || cnt_b > 0 { let rr = cnt_r .checked_sub(1) .and_then(|t| balls.get(&(Color::R, Color::R, t)).map(Vec::len)) .unwrap_or(0); let rb = balls .get(&(Color::R, Color::B, cnt_b)) .map(Vec::len) .unwrap_or(0); let br = balls .get(&(Color::B, Color::R, cnt_r)) .map(Vec::len) .unwrap_or(0); let bb = cnt_b .checked_sub(1) .and_then(|t| balls.get(&(Color::B, Color::B, t)).map(Vec::len)) .unwrap_or(0); if br > 0 && rb > 0 { answer!("No"); } if rr > 1 || bb > 1 { answer!("No"); } let prev_ans_len = ans.len(); macro_rules! ans_push { ($k:expr) => { ans.push(balls.get_mut(&$k).unwrap().pop().unwrap()); }; } if br > 0 { if bb == 1 { ans_push!((Color::B, Color::B, cnt_b - 1)); cnt_b -= 1; continue; } ans_push!((Color::B, Color::R, cnt_r)); cnt_b -= 1; continue; } else { if rr == 1 { ans_push!((Color::R, Color::R, cnt_r - 1)); cnt_r -= 1; continue; } if rb > 0 { ans_push!((Color::R, Color::B, cnt_b)); cnt_r -= 1; continue; } if bb == 1 { ans_push!((Color::B, Color::B, cnt_b - 1)); cnt_b -= 1; continue; } } if ans.len() == prev_ans_len { answer!("No"); } } println!("Yes"); for i in (0..n).rev() { print!("{}", ans[i] + 1); if i == 0 { println!(); } else { print!(" "); } } // { // let mut cnt_r = 0usize; // let mut cnt_b = 0usize; // for i in (0..n).rev() { // let (c, x, y) = cxy[ans[i]]; // match parse_color(x) { // Color::R => assert_eq!(y, cnt_r), // Color::B => assert_eq!(y, cnt_b), // } // match parse_color(c) { // Color::R => cnt_r += 1, // Color::B => cnt_b += 1, // } // } // } } #[allow(unreachable_code)] Ok(()) }