結果

問題 No.1328 alligachi-problem
ユーザー くれちーくれちー
提出日時 2020-12-25 02:03:20
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 192 ms / 2,000 ms
コード長 10,292 bytes
コンパイル時間 15,716 ms
コンパイル使用メモリ 383,612 KB
実行使用メモリ 27,164 KB
最終ジャッジ日時 2024-09-21 17:26:12
合計ジャッジ時間 22,598 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,812 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 1 ms
6,944 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 1 ms
6,944 KB
testcase_09 AC 192 ms
27,164 KB
testcase_10 AC 106 ms
26,192 KB
testcase_11 AC 189 ms
26,156 KB
testcase_12 AC 188 ms
26,172 KB
testcase_13 AC 187 ms
26,112 KB
testcase_14 AC 190 ms
26,160 KB
testcase_15 AC 102 ms
26,092 KB
testcase_16 AC 183 ms
26,120 KB
testcase_17 AC 178 ms
26,244 KB
testcase_18 AC 187 ms
26,328 KB
testcase_19 AC 186 ms
26,176 KB
testcase_20 AC 179 ms
26,088 KB
testcase_21 AC 183 ms
26,328 KB
testcase_22 AC 184 ms
26,108 KB
testcase_23 AC 99 ms
26,096 KB
testcase_24 AC 144 ms
26,116 KB
testcase_25 AC 99 ms
26,268 KB
testcase_26 AC 125 ms
17,296 KB
testcase_27 AC 125 ms
17,300 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// The main code is at the very bottom.

#[allow(unused_imports)]
use {
  lib::byte::ByteChar,
  std::cell::{Cell, RefCell},
  std::cmp::{
    self,
    Ordering::{self, *},
    Reverse,
  },
  std::collections::*,
  std::convert::identity,
  std::fmt::{self, Debug, Display, Formatter},
  std::io::prelude::*,
  std::iter::{self, FromIterator},
  std::marker::PhantomData,
  std::mem,
  std::num::Wrapping,
  std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
  std::process,
  std::rc::Rc,
  std::thread,
  std::time::{Duration, Instant},
  std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};

#[allow(unused_imports)]
#[macro_use]
pub mod lib {
  pub mod byte {
    pub use self::byte_char::*;

    mod byte_char {
      use std::error::Error;
      use std::fmt::{self, Debug, Display, Formatter};
      use std::str::FromStr;

      #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
      #[repr(transparent)]
      pub struct ByteChar(pub u8);

      impl Debug for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "b'{}'", self.0 as char)
        }
      }

      impl Display for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "{}", self.0 as char)
        }
      }

      impl FromStr for ByteChar {
        type Err = ParseByteCharError;

        fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
          match s.as_bytes().len() {
            1 => Ok(ByteChar(s.as_bytes()[0])),
            0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
            _ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
          }
        }
      }

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      pub struct ParseByteCharError {
        kind: ParseByteCharErrorKind,
      }

      impl Display for ParseByteCharError {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          f.write_str(match self.kind {
            ParseByteCharErrorKind::EmptyStr => "empty string",
            ParseByteCharErrorKind::TooManyBytes => "too many bytes",
          })
        }
      }

      impl Error for ParseByteCharError {}

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      enum ParseByteCharErrorKind {
        EmptyStr,
        TooManyBytes,
      }

      impl From<ParseByteCharErrorKind> for ParseByteCharError {
        fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
          ParseByteCharError { kind }
        }
      }
    }
  }

  pub mod io {
    pub use self::scanner::*;

    mod scanner {
      use std::io::{self, BufRead};
      use std::iter;
      use std::str::FromStr;

      #[derive(Debug)]
      pub struct Scanner<R> {
        reader: R,
        buf: String,
        pos: usize,
      }

      impl<R: BufRead> Scanner<R> {
        pub fn new(reader: R) -> Self {
          Scanner {
            reader,
            buf: String::new(),
            pos: 0,
          }
        }

        pub fn next(&mut self) -> io::Result<&str> {
          let start = loop {
            match self.rest().find(|c| c != ' ') {
              Some(i) => break i,
              None => self.fill_buf()?,
            }
          };
          self.pos += start;
          let len = self.rest().find(' ').unwrap_or(self.rest().len());
          let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
          self.pos += len;
          Ok(s)
        }

        pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
        where
          T: FromStr,
        {
          Ok(self.next()?.parse())
        }

        pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
        where
          T: FromStr,
        {
          iter::repeat_with(|| self.parse_next()).take(n).collect()
        }

        pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
        where
          F: FnMut(u8) -> T,
        {
          Ok(self.next()?.bytes().map(&mut f).collect())
        }

        pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
        where
          F: FnMut(u8) -> T,
        {
          iter::repeat_with(|| self.map_next_bytes(&mut f))
            .take(n)
            .collect()
        }

        fn rest(&self) -> &str {
          &self.buf[self.pos..]
        }

        fn fill_buf(&mut self) -> io::Result<()> {
          self.buf.clear();
          self.pos = 0;
          let read = self.reader.read_line(&mut self.buf)?;
          if read == 0 {
            return Err(io::ErrorKind::UnexpectedEof.into());
          }
          if *self.buf.as_bytes().last().unwrap() == b'\n' {
            self.buf.pop();
          }
          Ok(())
        }
      }
    }
  }
}

#[allow(unused_macros)]
macro_rules! eprint {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprint!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! eprintln {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprintln!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! dbg {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::dbg!($($arg)*)
    } else {
      ($($arg)*)
    }
  };
}

const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024);
const INTERACTIVE: bool = false;

fn main() -> std::io::Result<()> {
  match CUSTOM_STACK_SIZE_MIB {
    Some(stack_size_mib) => std::thread::Builder::new()
      .name("run_solver".to_owned())
      .stack_size(stack_size_mib * 1024 * 1024)
      .spawn(run_solver)?
      .join()
      .unwrap(),
    None => run_solver(),
  }
}

fn run_solver() -> std::io::Result<()> {
  let stdin = std::io::stdin();
  let reader = stdin.lock();
  let stdout = std::io::stdout();
  let writer = stdout.lock();
  macro_rules! with_wrapper {
    ($($wrapper:expr)?) => {{
      let mut writer = $($wrapper)?(writer);
      solve(reader, &mut writer)?;
      writer.flush()
    }};
  }
  if cfg!(debug_assertions) || INTERACTIVE {
    with_wrapper!()
  } else {
    with_wrapper!(std::io::BufWriter::new)
  }
}

fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
  R: BufRead,
  W: Write,
{
  let mut _scanner = lib::io::Scanner::new(reader);
  #[allow(unused_macros)]
  macro_rules! scan {
    ($T:ty) => {
      _scanner.parse_next::<$T>()?.unwrap()
    };
    ($($T:ty),+) => {
      ($(scan!($T)),+)
    };
    ($T:ty; $n:expr) => {
      _scanner.parse_next_n::<$T>($n)?.unwrap()
    };
    ($($T:ty),+; $n:expr) => {
      iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
        .take($n)
        .collect::<std::io::Result<Vec<_>>>()?
    };
  }
  #[allow(unused_macros)]
  macro_rules! scan_bytes_map {
    ($f:expr) => {
      _scanner.map_next_bytes($f)?
    };
    ($f:expr; $n:expr) => {
      _scanner.map_next_bytes_n($n, $f)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! print {
    ($($arg:tt)*) => {
      write!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! println {
    ($($arg:tt)*) => {
      writeln!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! answer {
    ($($arg:tt)*) => {{
      println!($($arg)*);
      return Ok(());
    }};
  }
  {
    #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
    enum Color {
      R,
      B,
    }
    fn parse_color(c: ByteChar) -> Color {
      match c.0 {
        b'R' => Color::R,
        b'B' => Color::B,
        _ => unreachable!(),
      }
    }

    let n = scan!(usize);
    let cxy = scan!(ByteChar, ByteChar, usize; n);

    let (mut cnt_r, mut cnt_b) = {
      let cnt = |color| {
        cxy
          .iter()
          .filter(|&&(c, _, _)| parse_color(c) == color)
          .count()
      };
      (cnt(Color::R), cnt(Color::B))
    };

    let mut balls = HashMap::<(Color, Color, usize), Vec<usize>>::new();
    for (i, &(c, x, y)) in cxy.iter().enumerate() {
      balls
        .entry((parse_color(c), parse_color(x), y))
        .or_default()
        .push(i);
    }

    let mut ans = Vec::with_capacity(n);
    while cnt_r > 0 || cnt_b > 0 {
      let rr = cnt_r
        .checked_sub(1)
        .and_then(|t| balls.get(&(Color::R, Color::R, t)).map(Vec::len))
        .unwrap_or(0);
      let rb = balls
        .get(&(Color::R, Color::B, cnt_b))
        .map(Vec::len)
        .unwrap_or(0);
      let br = balls
        .get(&(Color::B, Color::R, cnt_r))
        .map(Vec::len)
        .unwrap_or(0);
      let bb = cnt_b
        .checked_sub(1)
        .and_then(|t| balls.get(&(Color::B, Color::B, t)).map(Vec::len))
        .unwrap_or(0);

      if br > 0 && rb > 0 {
        answer!("No");
      }
      if rr > 1 || bb > 1 {
        answer!("No");
      }

      let prev_ans_len = ans.len();

      macro_rules! ans_push {
        ($k:expr) => {
          ans.push(balls.get_mut(&$k).unwrap().pop().unwrap());
        };
      }

      if br > 0 {
        if bb == 1 {
          ans_push!((Color::B, Color::B, cnt_b - 1));
          cnt_b -= 1;
          continue;
        }
        ans_push!((Color::B, Color::R, cnt_r));
        cnt_b -= 1;
        continue;
      } else {
        if rr == 1 {
          ans_push!((Color::R, Color::R, cnt_r - 1));
          cnt_r -= 1;
          continue;
        }
        if rb > 0 {
          ans_push!((Color::R, Color::B, cnt_b));
          cnt_r -= 1;
          continue;
        }
        if bb == 1 {
          ans_push!((Color::B, Color::B, cnt_b - 1));
          cnt_b -= 1;
          continue;
        }
      }

      if ans.len() == prev_ans_len {
        answer!("No");
      }
    }

    println!("Yes");
    for i in (0..n).rev() {
      print!("{}", ans[i] + 1);
      if i == 0 {
        println!();
      } else {
        print!(" ");
      }
    }

    // {
    //   let mut cnt_r = 0usize;
    //   let mut cnt_b = 0usize;
    //   for i in (0..n).rev() {
    //     let (c, x, y) = cxy[ans[i]];
    //     match parse_color(x) {
    //       Color::R => assert_eq!(y, cnt_r),
    //       Color::B => assert_eq!(y, cnt_b),
    //     }
    //     match parse_color(c) {
    //       Color::R => cnt_r += 1,
    //       Color::B => cnt_b += 1,
    //     }
    //   }
    // }
  }
  #[allow(unreachable_code)]
  Ok(())
}
0