結果
問題 | No.1321 塗るめた |
ユーザー | beet |
提出日時 | 2020-12-29 11:06:03 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 712 ms / 2,000 ms |
コード長 | 10,025 bytes |
コンパイル時間 | 2,575 ms |
コンパイル使用メモリ | 227,632 KB |
実行使用メモリ | 32,684 KB |
最終ジャッジ日時 | 2024-10-05 06:36:54 |
合計ジャッジ時間 | 19,299 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 17 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 1 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 336 ms
17,452 KB |
testcase_13 | AC | 372 ms
28,716 KB |
testcase_14 | AC | 239 ms
15,788 KB |
testcase_15 | AC | 331 ms
17,328 KB |
testcase_16 | AC | 332 ms
17,320 KB |
testcase_17 | AC | 13 ms
6,816 KB |
testcase_18 | AC | 711 ms
31,532 KB |
testcase_19 | AC | 167 ms
10,216 KB |
testcase_20 | AC | 339 ms
17,448 KB |
testcase_21 | AC | 509 ms
28,844 KB |
testcase_22 | AC | 698 ms
31,536 KB |
testcase_23 | AC | 703 ms
31,660 KB |
testcase_24 | AC | 702 ms
31,660 KB |
testcase_25 | AC | 703 ms
31,532 KB |
testcase_26 | AC | 695 ms
31,660 KB |
testcase_27 | AC | 700 ms
32,556 KB |
testcase_28 | AC | 698 ms
32,684 KB |
testcase_29 | AC | 702 ms
31,532 KB |
testcase_30 | AC | 712 ms
31,656 KB |
testcase_31 | AC | 511 ms
29,352 KB |
testcase_32 | AC | 337 ms
17,448 KB |
testcase_33 | AC | 334 ms
17,328 KB |
testcase_34 | AC | 332 ms
17,328 KB |
testcase_35 | AC | 331 ms
17,328 KB |
testcase_36 | AC | 321 ms
27,816 KB |
testcase_37 | AC | 502 ms
29,224 KB |
testcase_38 | AC | 509 ms
29,232 KB |
testcase_39 | AC | 506 ms
29,356 KB |
testcase_40 | AC | 509 ms
29,228 KB |
testcase_41 | AC | 512 ms
29,228 KB |
testcase_42 | AC | 2 ms
6,820 KB |
testcase_43 | AC | 332 ms
17,320 KB |
testcase_44 | AC | 333 ms
17,324 KB |
testcase_45 | AC | 335 ms
17,324 KB |
testcase_46 | AC | 75 ms
6,888 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using Int = long long; const char newl = '\n'; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);} template<typename T=int> vector<T> read(size_t n){ vector<T> ts(n); for(size_t i=0;i<n;i++) cin>>ts[i]; return ts; } #define call_from_test template<typename T, T MOD = 1000000007> struct Mint{ static constexpr T mod = MOD; T v; Mint():v(0){} Mint(signed v):v(v){} Mint(long long t){v=t%MOD;if(v<0) v+=MOD;} Mint pow(long long k){ Mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static Mint add_identity(){return Mint(0);} static Mint mul_identity(){return Mint(1);} Mint inv(){return pow(MOD-2);} Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;} Mint& operator/=(Mint a){return (*this)*=a.inv();} Mint operator+(Mint a) const{return Mint(v)+=a;} Mint operator-(Mint a) const{return Mint(v)-=a;} Mint operator*(Mint a) const{return Mint(v)*=a;} Mint operator/(Mint a) const{return Mint(v)/=a;} Mint operator-() const{return v?Mint(MOD-v):Mint(v);} bool operator==(const Mint a)const{return v==a.v;} bool operator!=(const Mint a)const{return v!=a.v;} bool operator <(const Mint a)const{return v <a.v;} static Mint comb(long long n,int k){ Mint num(1),dom(1); for(int i=0;i<k;i++){ num*=Mint(n-i); dom*=Mint(i+1); } return num/dom; } }; template<typename T, T MOD> constexpr T Mint<T, MOD>::mod; template<typename T, T MOD> ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;} template<typename M_> class Enumeration{ using M = M_; protected: static vector<M> fact,finv,invs; public: static void init(int n){ n=min<decltype(M::mod)>(n,M::mod-1); int m=fact.size(); if(n<m) return; fact.resize(n+1,1); finv.resize(n+1,1); invs.resize(n+1,1); if(m==0) m=1; for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i); finv[n]=M(1)/fact[n]; for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i); for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1]; } static M Fact(int n){ init(n); return fact[n]; } static M Finv(int n){ init(n); return finv[n]; } static M Invs(int n){ init(n); return invs[n]; } static M C(int n,int k){ if(n<k or k<0) return M(0); init(n); return fact[n]*finv[n-k]*finv[k]; } static M P(int n,int k){ if(n<k or k<0) return M(0); init(n); return fact[n]*finv[n-k]; } // put n identical balls into k distinct boxes static M H(int n,int k){ if(n<0 or k<0) return M(0); if(!n and !k) return M(1); init(n+k); return C(n+k-1,n); } }; template<typename M> vector<M> Enumeration<M>::fact=vector<M>(); template<typename M> vector<M> Enumeration<M>::finv=vector<M>(); template<typename M> vector<M> Enumeration<M>::invs=vector<M>(); template<typename M_> struct FormalPowerSeries : Enumeration<M_> { using M = M_; using super = Enumeration<M>; using super::fact; using super::finv; using super::invs; using Poly = vector<M>; using Conv = function<Poly(Poly, Poly)>; Conv conv; FormalPowerSeries(Conv conv):conv(conv){} Poly pre(const Poly &as,int deg){ return Poly(as.begin(),as.begin()+min((int)as.size(),deg)); } Poly add(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i]; return cs; } Poly sub(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i]; return cs; } Poly mul(Poly as,Poly bs){ return conv(as,bs); } Poly mul(Poly as,M k){ for(auto &a:as) a*=k; return as; } bool is_zero(Poly as){ return as==Poly(as.size(),0); } void shrink(Poly &as){ assert(not is_zero(as)); while(as.back()==M(0)) as.pop_back(); } // F(0) must not be 0 Poly inv(Poly as,int deg); // not zero Poly div(Poly as,Poly bs); // not zero Poly mod(Poly as,Poly bs); // F(0) must be 1 Poly sqrt(Poly as,int deg); Poly diff(Poly as); Poly integral(Poly as); // F(0) must be 1 Poly log(Poly as,int deg); // F(0) must be 0 Poly exp(Poly as,int deg); // not zero Poly pow(Poly as,long long k,int deg); // x <- x + c Poly shift(Poly as,M c); }; template<typename M> vector<M> FormalPowerSeries<M>::inv(Poly as,int deg){ assert(as[0]!=M(0)); Poly rs({M(1)/as[0]}); for(int i=1;i<deg;i<<=1) rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1); return rs; } template<typename M> vector<M> FormalPowerSeries<M>::div(Poly as,Poly bs){ shrink(as);shrink(bs); if(as.size()<bs.size()) return Poly({0}); reverse(as.begin(),as.end()); reverse(bs.begin(),bs.end()); int need=as.size()-bs.size()+1; Poly ds=pre(mul(as,inv(bs,need)),need); reverse(ds.begin(),ds.end()); return ds; } template<typename M> vector<M> FormalPowerSeries<M>::mod(Poly as,Poly bs){ if(is_zero(as)) return Poly({0}); shrink(as);shrink(bs); as=sub(as,mul(div(as,bs),bs)); if(is_zero(as)) return Poly({0}); shrink(as); return as; } template<typename M> vector<M> FormalPowerSeries<M>::sqrt(Poly as,int deg){ assert(as[0]==M(1)); M inv2=M(1)/M(2); Poly ss({M(1)}); for(int i=1;i<deg;i<<=1){ ss=pre(add(ss,mul(pre(as,i<<1),inv(ss,i<<1))),i<<1); for(M &x:ss) x*=inv2; } return ss; } template<typename M> vector<M> FormalPowerSeries<M>::diff(Poly as){ int n=as.size(); Poly rs(n); for(int i=1;i<n;i++) rs[i-1]=as[i]*M(i); return rs; } template<typename M> vector<M> FormalPowerSeries<M>::integral(Poly as){ super::init(as.size()+1); int n=as.size(); Poly rs(n+1); rs[0]=M(0); for(int i=0;i<n;i++) rs[i+1]=as[i]*invs[i+1]; return rs; } template<typename M> vector<M> FormalPowerSeries<M>::log(Poly as,int deg){ return pre(integral(mul(diff(as),inv(as,deg))),deg); } template<typename M> vector<M> FormalPowerSeries<M>::exp(Poly as,int deg){ Poly fs({M(1)}); as[0]+=M(1); for(int i=1;i<deg;i<<=1) fs=pre(mul(fs,sub(pre(as,i<<1),log(fs,i<<1))),i<<1); return fs; } template<typename M> vector<M> FormalPowerSeries<M>::pow(Poly as,long long k,int deg){ if(is_zero(as)) return Poly(deg,M(0)); shrink(as); int cnt=0; while(as[cnt]==M(0)) cnt++; if(cnt*k>=deg) return Poly(deg,M(0)); as.erase(as.begin(),as.begin()+cnt); deg-=cnt*k; M c=as[0]; Poly zs(cnt*k,M(0)); Poly rs=mul(exp(mul(log(mul(as,c.inv()),deg),M(k)),deg),c.pow(k)); zs.insert(zs.end(),rs.begin(),rs.end()); return pre(zs,deg+cnt*k); } template<typename M> vector<M> FormalPowerSeries<M>::shift(Poly as,M c){ super::init(as.size()+1); int n=as.size(); for(int i=0;i<n;i++) as[i]*=fact[i]; reverse(as.begin(),as.end()); Poly bs(n,M(1)); for(int i=1;i<n;i++) bs[i]=bs[i-1]*c*invs[i]; as=pre(mul(as,bs),n); reverse(as.begin(),as.end()); for(int i=0;i<n;i++) as[i]*=finv[i]; return as; } #undef call_from_test constexpr int bmds(int x){ const int v[] = {1012924417, 924844033, 998244353, 897581057, 645922817}; return v[x]; } constexpr int brts(int x){ const int v[] = {5, 5, 3, 3, 3}; return v[x]; } template<int X> struct NTT{ static constexpr int md = bmds(X); static constexpr int rt = brts(X); using M = Mint<int, md>; vector< vector<M> > rts,rrts; void ensure_base(int n){ if((int)rts.size()>=n) return; rts.resize(n);rrts.resize(n); for(int i=1;i<n;i<<=1){ if(!rts[i].empty()) continue; M w=M(rt).pow((md-1)/(i<<1)); M rw=w.inv(); rts[i].resize(i);rrts[i].resize(i); rts[i][0]=M(1);rrts[i][0]=M(1); for(int k=1;k<i;k++){ rts[i][k]=rts[i][k-1]*w; rrts[i][k]=rrts[i][k-1]*rw; } } } void ntt(vector<M> &as,bool f){ int n=as.size(); assert((n&(n-1))==0); ensure_base(n); for(int i=0,j=1;j+1<n;j++){ for(int k=n>>1;k>(i^=k);k>>=1); if(i>j) swap(as[i],as[j]); } for(int i=1;i<n;i<<=1){ for(int j=0;j<n;j+=i*2){ for(int k=0;k<i;k++){ M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]); as[i+j+k]=as[j+k]-z; as[j+k]+=z; } } } if(f){ M tmp=M(n).inv(); for(int i=0;i<n;i++) as[i]*=tmp; } } vector<M> multiply(vector<M> as,vector<M> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; as.resize(sz,M(0)); bs.resize(sz,M(0)); ntt(as,0);ntt(bs,0); for(int i=0;i<sz;i++) as[i]*=bs[i]; ntt(as,1); as.resize(need); return as; } vector<int> multiply(vector<int> as,vector<int> bs){ vector<M> am(as.size()),bm(bs.size()); for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]); for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]); vector<M> cm=multiply(am,bm); vector<int> cs(cm.size()); for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v; return cs; } }; template<int X> constexpr int NTT<X>::md; template<int X> constexpr int NTT<X>::rt; //INSERT ABOVE HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); NTT<2> ntt; using M = decltype(ntt)::M; auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);}; FormalPowerSeries<M> FPS(conv); int n,m,k; cin>>n>>m>>k; auto ps=FPS.exp({M(0),M(1)},n+1); ps[0]-=M(1); auto qs=FPS.pow(ps,k,n+1); M ans{0}; using E = Enumeration<M>; E::init(n+m); vector<M> po(n+1,1); for(int i=0;i+1<(int)po.size();i++) po[i+1]=po[i]*M(m); for(int l=k;l<=n;l++) ans+=E::C(m,k)*E::C(n,l)*E::Fact(l)*qs[l]*po[n-l]; cout<<ans<<newl; return 0; }