結果
| 問題 |
No.1321 塗るめた
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2020-12-29 15:19:44 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 793 ms / 2,000 ms |
| コード長 | 8,629 bytes |
| コンパイル時間 | 2,670 ms |
| コンパイル使用メモリ | 218,756 KB |
| 最終ジャッジ日時 | 2025-01-17 08:00:11 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 45 |
ソースコード
// verification-helper: PROBLEM https://yukicoder.me/problems/5633
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
template<typename T, T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T, T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T, T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
// [0, n]
template<typename T>
vector<T> powers(int n,T x){
vector<T> po(n+1,T(1));
for(int i=0;i<n;i++) po[i+1]=po[i]*x;
return po;
}
constexpr int bmds(int x){
const int v[] = {1012924417, 924844033, 998244353,
897581057, 645922817};
return v[x];
}
constexpr int brts(int x){
const int v[] = {5, 5, 3, 3, 3};
return v[x];
}
template<int X>
struct NTT{
static constexpr int md = bmds(X);
static constexpr int rt = brts(X);
using M = Mint<int, md>;
vector< vector<M> > rts,rrts;
void ensure_base(int n){
if((int)rts.size()>=n) return;
rts.resize(n);rrts.resize(n);
for(int i=1;i<n;i<<=1){
if(!rts[i].empty()) continue;
M w=M(rt).pow((md-1)/(i<<1));
M rw=w.inv();
rts[i].resize(i);rrts[i].resize(i);
rts[i][0]=M(1);rrts[i][0]=M(1);
for(int k=1;k<i;k++){
rts[i][k]=rts[i][k-1]*w;
rrts[i][k]=rrts[i][k-1]*rw;
}
}
}
void ntt(vector<M> &as,bool f){
int n=as.size();
assert((n&(n-1))==0);
ensure_base(n);
for(int i=0,j=1;j+1<n;j++){
for(int k=n>>1;k>(i^=k);k>>=1);
if(i>j) swap(as[i],as[j]);
}
for(int i=1;i<n;i<<=1){
for(int j=0;j<n;j+=i*2){
for(int k=0;k<i;k++){
M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);
as[i+j+k]=as[j+k]-z;
as[j+k]+=z;
}
}
}
if(f){
M tmp=M(n).inv();
for(int i=0;i<n;i++) as[i]*=tmp;
}
}
vector<M> multiply(vector<M> as,vector<M> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
as.resize(sz,M(0));
bs.resize(sz,M(0));
ntt(as,0);ntt(bs,0);
for(int i=0;i<sz;i++) as[i]*=bs[i];
ntt(as,1);
as.resize(need);
return as;
}
vector<int> multiply(vector<int> as,vector<int> bs){
vector<M> am(as.size()),bm(bs.size());
for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]);
for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]);
vector<M> cm=multiply(am,bm);
vector<int> cs(cm.size());
for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;
return cs;
}
};
template<int X> constexpr int NTT<X>::md;
template<int X> constexpr int NTT<X>::rt;
template<typename M_>
class Enumeration{
using M = M_;
protected:
static vector<M> fact,finv,invs;
public:
static void init(int n){
n=min<decltype(M::mod)>(n,M::mod-1);
int m=fact.size();
if(n<m) return;
fact.resize(n+1,1);
finv.resize(n+1,1);
invs.resize(n+1,1);
if(m==0) m=1;
for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);
finv[n]=M(1)/fact[n];
for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);
for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];
}
static M Fact(int n){
init(n);
return fact[n];
}
static M Finv(int n){
init(n);
return finv[n];
}
static M Invs(int n){
init(n);
return invs[n];
}
static M C(int n,int k){
if(n<k or k<0) return M(0);
init(n);
return fact[n]*finv[n-k]*finv[k];
}
static M P(int n,int k){
if(n<k or k<0) return M(0);
init(n);
return fact[n]*finv[n-k];
}
// put n identical balls into k distinct boxes
static M H(int n,int k){
if(n<0 or k<0) return M(0);
if(!n and !k) return M(1);
init(n+k);
return C(n+k-1,n);
}
};
template<typename M>
vector<M> Enumeration<M>::fact=vector<M>();
template<typename M>
vector<M> Enumeration<M>::finv=vector<M>();
template<typename M>
vector<M> Enumeration<M>::invs=vector<M>();
template<typename M_>
struct FormalPowerSeries : Enumeration<M_> {
using M = M_;
using super = Enumeration<M>;
using super::fact;
using super::finv;
using super::invs;
using Poly = vector<M>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
FormalPowerSeries(Conv conv):conv(conv){}
Poly pre(const Poly &as,int deg){
return Poly(as.begin(),as.begin()+min((int)as.size(),deg));
}
Poly add(Poly as,Poly bs){
int sz=max(as.size(),bs.size());
Poly cs(sz,M(0));
for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];
return cs;
}
Poly sub(Poly as,Poly bs){
int sz=max(as.size(),bs.size());
Poly cs(sz,M(0));
for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];
return cs;
}
Poly mul(Poly as,Poly bs){
return conv(as,bs);
}
Poly mul(Poly as,M k){
for(auto &a:as) a*=k;
return as;
}
bool is_zero(Poly as){
return as==Poly(as.size(),0);
}
void shrink(Poly &as){
assert(not is_zero(as));
while(as.back()==M(0)) as.pop_back();
}
// F(0) must not be 0
Poly inv(Poly as,int deg);
// not zero
Poly div(Poly as,Poly bs);
// not zero
Poly mod(Poly as,Poly bs);
// F(0) must be 1
Poly sqrt(Poly as,int deg);
Poly diff(Poly as);
Poly integral(Poly as);
// F(0) must be 1
Poly log(Poly as,int deg);
// F(0) must be 0
Poly exp(Poly as,int deg);
// not zero
Poly pow(Poly as,long long k,int deg);
// x <- x + c
Poly shift(Poly as,M c);
};
template<typename M>
vector<M> FormalPowerSeries<M>::inv(Poly as,int deg){
assert(as[0]!=M(0));
Poly rs({M(1)/as[0]});
for(int i=1;i<deg;i<<=1)
rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);
return rs;
}
template<typename M>
vector<M> FormalPowerSeries<M>::diff(Poly as){
int n=as.size();
Poly rs(n);
for(int i=1;i<n;i++) rs[i-1]=as[i]*M(i);
return rs;
}
template<typename M>
vector<M> FormalPowerSeries<M>::integral(Poly as){
super::init(as.size()+1);
int n=as.size();
Poly rs(n+1);
rs[0]=M(0);
for(int i=0;i<n;i++) rs[i+1]=as[i]*invs[i+1];
return rs;
}
template<typename M>
vector<M> FormalPowerSeries<M>::log(Poly as,int deg){
return pre(integral(mul(diff(as),inv(as,deg))),deg);
}
template<typename M>
vector<M> FormalPowerSeries<M>::exp(Poly as,int deg){
Poly fs({M(1)});
as[0]+=M(1);
for(int i=1;i<deg;i<<=1)
fs=pre(mul(fs,sub(pre(as,i<<1),log(fs,i<<1))),i<<1);
return fs;
}
template<typename M>
vector<M> FormalPowerSeries<M>::pow(Poly as,long long k,int deg){
if(is_zero(as)) return Poly(deg,M(0));
shrink(as);
int cnt=0;
while(as[cnt]==M(0)) cnt++;
if(cnt*k>=deg) return Poly(deg,M(0));
as.erase(as.begin(),as.begin()+cnt);
deg-=cnt*k;
M c=as[0];
Poly zs(cnt*k,M(0));
Poly rs=mul(exp(mul(log(mul(as,c.inv()),deg),M(k)),deg),c.pow(k));
zs.insert(zs.end(),rs.begin(),rs.end());
return pre(zs,deg+cnt*k);
}
namespace fps_998244353{
NTT<2> ntt;
using M = decltype(ntt)::M;
using E = Enumeration<M>;
auto conv=[](auto as,auto bs){return ntt.multiply(as,bs);};
FormalPowerSeries<M> FPS(conv);
}
#undef call_from_test
//INSERT ABOVE HERE
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
int n,m,k;
cin>>n>>m>>k;
using namespace fps_998244353;
E::init(n+m);
auto ps=FPS.exp({M(0),M(1)},n+1);
ps[0]-=M(1);
auto qs=FPS.pow(ps,k,n+1);
auto po=powers(n,M(m));
M ans{0};
for(int l=k;l<=n;l++)
ans+=E::C(m,k)*E::C(n,l)*E::Fact(l)*qs[l]*po[n-l];
cout<<ans<<endl;
return 0;
}
beet