結果
問題 | No.1352 Three Coins |
ユーザー | PCTprobability |
提出日時 | 2021-01-11 10:32:16 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 38,520 bytes |
コンパイル時間 | 2,889 ms |
コンパイル使用メモリ | 218,364 KB |
実行使用メモリ | 7,368 KB |
最終ジャッジ日時 | 2024-11-29 19:59:49 |
合計ジャッジ時間 | 4,069 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 3 ms
6,816 KB |
testcase_06 | AC | 7 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | AC | 7 ms
6,820 KB |
testcase_09 | AC | 4 ms
6,820 KB |
testcase_10 | AC | 6 ms
6,816 KB |
testcase_11 | AC | 6 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 6 ms
6,824 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 1 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 4 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,820 KB |
testcase_20 | AC | 1 ms
6,816 KB |
testcase_21 | AC | 8 ms
6,816 KB |
testcase_22 | AC | 1 ms
6,816 KB |
testcase_23 | AC | 2 ms
6,820 KB |
testcase_24 | AC | 2 ms
6,816 KB |
testcase_25 | AC | 2 ms
6,820 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | WA | - |
testcase_28 | AC | 7 ms
6,816 KB |
testcase_29 | WA | - |
testcase_30 | AC | 11 ms
7,344 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 10 ms
7,368 KB |
testcase_33 | AC | 2 ms
6,820 KB |
testcase_34 | AC | 2 ms
6,820 KB |
testcase_35 | AC | 2 ms
6,820 KB |
ソースコード
//////////////////////////////////////////////////////////////////////////////// // Give me AC!!! // //////////////////////////////////////////////////////////////////////////////// #include <bits/stdc++.h> using namespace std; #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using ll = long long; using ld = long double; using graph = vector<vector<int>>; #define NDEBUG using int64 = long long; const int64 infll = (1LL << 62) - 1; #define all(s) (s).begin(),(s).end() #define sz(x) (int) (x).size() #define REP(i,n) for(ll i=0;i<(ll)(n);i++) #define bit(n,k) ((n>>k)&1) /*nのk bit目*/ #define REPD(i,n) for(ll i=n-1;i>=0;i--) #define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++) #define FORD(i,a,b) for(ll i=a;i>=(ll)(b);i--) //xにはvectorなどのコンテナ #define ALL(x) (x).begin(),(x).end() //sortなどの引数を省略したい #define SIZE(x) ((ll)(x).size()) //sizeをsize_tからllに直しておく #define MAX(x) *max_element(ALL(x)) //最大値を求める #define MIN(x) *min_element(ALL(x)) //最小値を求める #define PQ priority_queue<vector<ll>,vector<vector<ll>>,greater<vector<ll>>> #define PB push_back //vectorヘの挿入 #define MP make_pair //pairのコンストラクタ #define S second //pairの二つ目の要素 #define coutY cout<<"YES"<<endl #define couty cout<<"Yes"<<endl #define coutN cout<<"NO"<<endl #define coutn cout<<"No"<<endl #define coutdouble(a,b) cout << fixed << setprecision(a) << double(b) ; #define vi(a,b) vector<int> a(b) #define vl(a,b) vector<ll> a(b) #define vs(a,b) vector<string> a(b) #define vll(a,b,c) vector<vector<ll>> a(b, vector<ll>(c)); #define intque(a) queue<int> a; #define llque(a) queue<ll> a; #define intque2(a) priority_queue<int, vector<int>, greater<int>> a; #define llque2(a) priority_queue<ll, vector<ll>, greater<ll>> a; #define pushback(a,b) a.push_back(b) #define mapii(M1) map<int, int> M1; #define cou(v,x) count(v.begin(), v.end(), x) #define mapll(M1) map<ll,ll> M1; #define mapls(M1) map<ll, string> M1; #define mapsl(M1) map<string, ll> M1; #define twolook(a,l,r,x) lower_bound(a+l, a+r, x) - a #define sor(a) sort(a.begin(), a.end()) #define rever(a) reverse(a.begin(),a.end()) #define rep(i,a) for(ll i=0;i<a;i++) #define vcin(n) for(ll i=0;i<ll(n.size());i++) cin>>n[i] #define vcout(n) for(ll i=0;i<ll(n.size());i++) cout<<n[i] #define vcin2(n) rep(i,ll(n.size())) rep(j,ll(n.at(0).size())) cin>>n[i][j] #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) const ll mod = 998244353; const ll MOD = 998244353; //const ll MOD=1000000007; //const ll mod=1000000007; constexpr ll MAX = 500000; //const ll _max = 9223372036854775807; const ll _max = 1223372036854775807; const ll inf = 2000000000000000000ll; static const long double pi = 3.141592653589793; const int MAX_COL=350; const int MAX_ROW=350; ll fac[MAX],finv[MAX],inv[MAX]; typedef int FLOW; // フローを表す型、今回は int 型 const int MAX_V = 6000; // グラフの最大ノード数 const FLOW INF = 100000000; // テーブルを作る前処理 void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll HOM(ll n,ll k){ if(n+k-1>=n-1&&n-1>=0){ return COM(n+k-1,n-1); } else{ return 0; } } ll modPow(long long a, long long n, long long p) { if (a == 0 && n == 0) return 1; if (n == 0) return 1; // 0乗にも対応する場合 if (n == 1) return a % p; if (n % 2 == 1) return (a * modPow(a, n - 1, p)) % p; long long t = modPow(a, n / 2, p); return (t * t) % p; } ll clocks(ll a,ll b,ll c){ return a*3600+b*60+c; } ll divup(ll b,ll d){ if(b%d==0){ return b/d; } else{ return b/d+1; } } ll zero(ll a){ return max(ll(0),a); } //aはbの何乗以下かを満たす数の内最大の物,(a,10)はaの桁数 ll expless(ll a,ll b){ ll k=0; ll o=1; while(a>=o){ k++; o=o*b; } return k; } //aをb進法で表す //b進法のaを10進法に直す ll tenbase(ll a,ll b){ ll c=expless(a,10); ll ans=0; ll k=1; for(int i=0;i<c;i++){ ans+=(a%10)*k; k=k*b; a=a/10; } return ans; } vector<pair<long long, long long> > prime_factorize(long long N) { vector<pair<long long, long long> > res; for (long long a = 2; a * a <= N; ++a) { if (N % a != 0) continue; long long ex = 0; // 指数 // 割れる限り割り続ける while (N % a == 0) { ++ex; N /= a; } // その結果を push res.push_back({a, ex}); } // 最後に残った数について if (N != 1) res.push_back({N, 1}); return res; } template <class T, class U> void chmin(T& t, const U& u) { if (t > u) t = u; } template <class T, class U> void chmax(T& t, const U& u) { if (t < u) t = u; } //aがbで何回割り切るか ll exp(ll a,ll b){ ll ans=0; while(a%b==0){ a=a/b; ans++; } return ans; } const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; const int X[6]={1,1,0,-1,-1,0}; const int Y[6]={0,1,1,0,-1,-1}; template<typename T> vector<T> smallest_prime_factors(T n) { vector<T> spf(n + 1); for (int i = 0; i <= n; i++) spf[i] = i; for (T i = 2; i * i <= n; i++) { // 素数だったら if (spf[i] == i) { for (T j = i * i; j <= n; j += i) { // iを持つ整数かつまだ素数が決まっていないなら if (spf[j] == j) { spf[j] = i; } } } } return spf; } vector<pair<ll,ll>> factolization(ll x, vector<ll> &spf) { vector<pair<ll,ll>> ret; ll p; ll z; while (x != 1) { p=(spf[x]); z=0; while(x%p==0){ z++; x /= p; } ret.push_back({p, z}); } return ret; } vector<bool> is; vector<long long int> prime_(ll n){ is.resize(n+1, true); is[0] = false; is[1] = false; vector<long long int> primes; for (int i=2; i<=n; i++) { if (is[i] == true){ primes.push_back(i); for (int j=i*2; j<=n; j+=i){ is[j] = false; } } } return primes; } ll so(ll a){ ll ans=0; if(a==0){ return 0; } while(a%2==0){ a/=2; ans++; } return ans; } ll binary(ll bina){ ll ans = 0; for (ll i = 0; bina>0 ; i++) { ans = ans+(bina%2)*pow(10,i); bina = bina/2; } return ans; } vector<long long> enum_divisors(long long N) { vector<long long> res; for (long long i = 1; i * i <= N; ++i) { if (N % i == 0) { res.push_back(i); // 重複しないならば i の相方である N/i も push if (N/i != i) res.push_back(N/i); } } // 小さい順に並び替える sort(res.begin(), res.end()); return res; } ll vectorcheck(vector<ll> t,ll key){ auto iter = lower_bound(ALL(t), key); auto iter2 = upper_bound(ALL(t), key); if((iter-t.begin())!=(iter2-t.begin())){ return 1; } else{ return 0; } } int ctoi(const char c){ switch(c){ case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; default : return -1; } } ll ord(ll a,ll b){ ll ans=0; while(a%b==0){ ans++; a/=b; } return ans; } ll atll(ll a,ll b){ b++; ll c=expless(a,10); ll d=c-b; ll f=1; for(int i=0;i<d;i++){ f=f*10; } a=(a/f); return a%10; } struct BitMatrix { int H, W; bitset<MAX_COL> val[MAX_ROW]; BitMatrix(int m = 1, int n = 1) : H(m), W(n) {} inline bitset<MAX_COL>& operator [] (int i) {return val[i];} }; int GaussJordan(BitMatrix &A, bool is_extended = false) { int rank = 0; for (int col = 0; col < A.W; ++col) { if (is_extended && col == A.W - 1) break; int pivot = -1; for (int row = rank; row < A.H; ++row) { if (A[row][col]) { pivot = row; break; } } if (pivot == -1) continue; swap(A[pivot], A[rank]); for (int row = 0; row < A.H; ++row) { if (row != rank && A[row][col]) A[row] ^= A[rank]; } ++rank; } return rank; } int pos(const char c){ if('a' <= c && c <= 'z') return (c-'a'); return -1; } // グラフの辺の構造体 struct Edge { int rev, from, to; FLOW cap, icap; Edge(int r, int f, int t, FLOW c) : rev(r), from(f), to(t), cap(c), icap(c) {} friend ostream& operator << (ostream& s, const Edge& E) { if (E.cap > 0) return s << E.from << "->" << E.to << '(' << E.cap << ')'; else return s; } }; // グラフ構造体 struct Graph { int V; vector<Edge> list[MAX_V]; Graph(int n = 0) : V(n) { for (int i = 0; i < MAX_V; ++i) list[i].clear(); } void init(int n = 0) { V = n; for (int i = 0; i < MAX_V; ++i) list[i].clear(); } void resize(int n = 0) { V = n; } void reset() { for (int i = 0; i < V; ++i) for (int j = 0; j < int(list[i].size()); ++j) list[i][j].cap = list[i][j].icap; } inline vector<Edge>& operator [] (int i) { return list[i]; } Edge &redge(Edge e) { if (e.from != e.to) return list[e.to][e.rev]; else return list[e.to][e.rev + 1]; } void addedge(int from, int to, FLOW cap) { list[from].push_back(Edge((int)list[to].size(), from, to, cap)); list[to].push_back(Edge((int)list[from].size() - 1, to, from, 0)); } }; // 最大流を求めるサブルーチンたち static int level[MAX_V]; static int iter[MAX_V]; void dibfs(Graph &G, int s) { for (int i = 0; i < MAX_V; ++i) level[i] = -1; level[s] = 0; queue<int> que; que.push(s); while (!que.empty()) { int v = que.front(); que.pop(); for (int i = 0; i < int(G[v].size()); ++i) { Edge &e = G[v][i]; if (level[e.to] < 0 && e.cap > 0) { level[e.to] = level[v] + 1; que.push(e.to); } } } } FLOW didfs(Graph &G, int v, int t, FLOW f) { if (v == t) return f; for (int &i = iter[v]; i < int(G[v].size()); ++i) { Edge &e = G[v][i], &re = G.redge(e); if (level[v] < level[e.to] && e.cap > 0) { FLOW d = didfs(G, e.to, t, min(f, e.cap)); if (d > 0) { e.cap -= d; re.cap += d; return d; } } } return 0; } // 最大流を求めるメイン関数 FLOW Dinic(Graph &G, int s, int t) { FLOW res = 0; while (true) { dibfs(G, s); if (level[t] < 0) return res; memset(iter, 0, sizeof(iter)); FLOW flow; while ((flow = didfs(G, s, t, INF)) > 0) { res += flow; } } } vector<ll> topological_sort(vector<vector<ll>> &G, vector<ll> &indegree, ll V) { // トポロジカルソートを記録する配列 vector<ll> sorted_vertices; // 入次数が0の頂点を発見したら、処理待ち頂点としてキューに追加する queue<ll> que; for (int i = 0; i < V; i++) { if (indegree[i] == 0) { que.push(i); } } // キューが空になるまで、操作1~3を繰り返す while (que.empty() == false) { // キューの先頭の頂点を取り出す int v = que.front(); que.pop(); // その頂点と隣接している頂点の入次数を減らし、0になればキューに追加 for (int i = 0; i < int(G[v].size()); i++) { int u = G[v][i]; indegree[u] -= 1; if (indegree[u] == 0) que.push(u); } // 頂点vを配列の末尾に追加する sorted_vertices.push_back(v); } // トポロジカルソートを返す return sorted_vertices; } vector<vector<ll>> multi(vector<vector<ll>> a, vector<vector<ll>> b){ ll n = a.size(); vector<vector<ll>> res(n, vector<ll>(n, 0)); for (ll i = 0; i < n; ++i){ for (ll j = 0; j < n; ++j){ for (ll x = 0; x < n; ++x){ res[i][j] = (res[i][j] + (a[i][x] * b[x][j])) % mod; } } } return res; } vector<vector<ll>> mul_exp(vector<vector<ll>> adj, ll k, ll n){ if (k == 1) return adj; vector<vector<ll>> res = mul_exp(adj, k / 2, n); if (k % 2 == 0) return multi(res, res); else return multi(adj, multi(res, res)); } struct CHT { struct Line { ll slope, yIntercept; Line(ll slope, ll yIntercept) : slope(slope), yIntercept(yIntercept) {} ll val(ll x) { return slope * x + yIntercept; } ll intersect(Line y) { return (y.yIntercept - yIntercept + slope - y.slope - 1) / (slope - y.slope); } }; deque<pair<Line, ll>> dq; void insert(ll slope, ll yIntercept) { Line newLine(slope, yIntercept); while (sz(dq) > 1 && dq.back().second >= dq.back().first.intersect(newLine)) dq.pop_back(); if (dq.empty()) { dq.emplace_back(newLine, 0); return; } dq.emplace_back(newLine, dq.back().first.intersect(newLine)); } ll query(ll x) { while (sz(dq) > 1) { if (dq[1].second <= x) dq.pop_front(); else break; } return dq[0].first.val(x); } ll query2(ll x) { auto qry = *lower_bound(dq.rbegin(), dq.rend(), make_pair(Line(0, 0), x), [&](const pair<Line, int> &a, const pair<Line, int> &b) { return a.second > b.second; }); return qry.first.val(x); } }; template <typename T> int compress(vector<T> x, map<T, int> &zip, vector<int> &unzip) { sort(x.begin(), x.end()); x.erase(unique(x.begin(), x.end()), x.end()); for (int i = 0; i < x.size(); i++) { zip[x[i]] = i; unzip[i] = x[i]; } return x.size(); } long long modlog(long long x,long long y,long long MOD){ x %= MOD; y %= MOD; long long H = sqrt(MOD); vector<pair<long long,long long>> baby(H); // Baby-step long long Z = y; for(long long a=0;a<H;a++){ //yx^(H-1) baby[a] = make_pair(Z,a); Z = (Z*x) % MOD; } sort(baby.begin(),baby.end()); // Giant step long long xH=1; for(int i=0;i<H;i++) xH = (xH*x) % MOD; long long xaH = 1; for(int a=1;a<=(MOD/H)+1;a++){ xaH = (xaH*xH) % MOD; auto itr = lower_bound(baby.begin(),baby.end(),make_pair(xaH+1,0LL)); if(itr->second==H) continue; itr--; if(itr->first==xaH) return a*H - itr->second; } return -1; } vector<pair<ll,ll>> lp(vector<ll> a){ sor(a); ll x=a.at(0); ll y=1; vector<pair<ll,ll>> ans; for(int i=1;i<int(a.size());i++){ if(a.at(i)!=a.at(i-1)){ ans.push_back({x,y}); x=a.at(i); y=1; } else{ y++; } } if(y!=0){ ans.push_back({x,y}); } return ans; } typedef unsigned long long ull; #define B1 100000007 #define B2 1000000007 bool rolling_hash(string const& S, int t_start, int m){ int s_start = t_start + m; // B^mを用意する ull pow_B_m_1 = 1, pow_B_m_2 = 1; for(int k = 0; k < m; k++){ pow_B_m_1 *= B1, pow_B_m_2 *= B2; } // sとtの先頭m文字のハッシュ値sh,thを計算 ull sh1 = 0, sh2 = 0, th1 = 0, th2 = 0; for(int k = 0; k < m; k++){ th1 = th1 * B1 + S[t_start + k], th2 = th2 * B2 + S[t_start + k]; sh1 = sh1 * B1 + S[s_start + k], sh2 = sh2 * B2 + S[s_start + k]; } // sをずらしてハッシュ値を更新 for(int k = 0; s_start + k < int(S.length()); k++){ if(sh1 == th1 && sh2 == th2) return true; if(k + s_start < int(S.length())){ sh1 = sh1 * B1 + S[s_start + m + k] - S[s_start + k] * pow_B_m_1; sh2 = sh2 * B2 + S[s_start + m + k] - S[s_start + k] * pow_B_m_2; } } return false; } constexpr double PI = acosl(-1); struct Comp { double real, imag; Comp(double real = 0, double imag = 0) : real(real), imag(imag) {} friend inline ostream& operator << (ostream &s, const Comp &c) { return s << '<' << c.real << ',' << c.imag << '>'; } inline Comp operator + (const Comp &c) { return {real + c.real, imag + c.imag}; } inline Comp operator - (const Comp &c) { return {real - c.real, imag - c.imag}; } inline Comp operator * (const Comp &c) { return {real * c.real - imag * c.imag, real * c.imag + imag * c.real}; } inline Comp operator * (double a) { return {real * a, imag * a}; } inline Comp operator / (double a) { return {real / a, imag / a}; } }; // FFT void trans(vector<Comp> &v, bool inv = false) { int n = SIZE(v); for (int i = 0, j = 1; j < n-1; j++) { for (int k = n>>1; k > (i ^= k); k >>= 1); if (i > j) swap(v[i], v[j]); } for (int t = 2; t <= n; t <<= 1) { double ang = acosl(-1.0) * 2 / t; if (inv) ang = -ang; for (int i = 0; i < n; i += t) { REP(j, t/2) { Comp w = {cos(ang * j), sin(ang * j)}; int j1 = i + j, j2 = i + j + t/2; Comp c1 = v[j1], c2 = v[j2] * w; v[j1] = c1 + c2; v[j2] = c1 - c2; } } } if (inv) REP(i, n) v[i] = v[i]/n; } // A * B vector<ll> mult(const vector<ll> &A, const vector<ll> &B) { int size_a = 1; while (size_a < SIZE(A)) size_a <<= 1; int size_b = 1; while (size_b < SIZE(B)) size_b <<= 1; int size_fft = max(size_a, size_b) << 1; vector<Comp> cA(size_fft), cB(size_fft), cC(size_fft); for (int i = 0; i < SIZE(A); ++i) cA[i] = {(double)A[i], 0}; for (int i = 0; i < SIZE(B); ++i) cB[i] = {(double)B[i], 0}; trans(cA); trans(cB); REP(i, size_fft) cC[i] = cA[i] * cB[i]; trans(cC, true); vector<ll> res(SIZE(A) + SIZE(B) - 1); for (int i = 0; i < SIZE(res); ++i) { res[i] = (ll)(cC[i].real + 0.5); } return res; } template<typename T> struct BellmanFord { struct Vertex { int to; T cost; Vertex (int to_, T cost_) : to(to_), cost(cost_) {} }; T INF; const int n; vector<vector<Vertex>> Graph, invGraph; vector<T> dt; vector<bool> reach; void reachable(const int now, vector<bool> &seen){ if(seen[now]) return; seen[now] = true; for(const Vertex nxt : Graph[now]) reachable(nxt.to, seen); } public: bool loop = false; BellmanFord (const int n_, const T INF_ = numeric_limits<T>::max()/2) : INF(INF_), n(n_), Graph(n_), invGraph(n_), dt(n, INF), reach(n, true) {} T operator [] (const int i) { return dt[i]; } void AddEdge(const int from, const int to, const T cost){ Graph[from].push_back(Vertex(to, cost)); } void Build (const int from){ dt[from] = 0; for(int i = 0; i < n; i++){ bool update = false; for(int now = 0; now < n; now++){ if(!reach[now]) continue; for(const Vertex nxt : Graph[now]){ if(!reach[nxt.to] or dt[now] == INF) continue; if(dt[nxt.to] > dt[now] + nxt.cost){ dt[nxt.to] = dt[now] + nxt.cost; update = true; if(i == n-1) loop = true; } } } if(!update) break; } } void Build (const int from, const int to){ for(int i = 0; i < n; i++){ vector<bool> seen(n, false); reachable(i, seen); reach[i] = seen[to]; } Build(from); } }; ll P(ll a,ll b){ if(a<0||b<0||a<b) return -1; ll c=a-b; c=modPow(fac[c],mod-2,mod); a=fac[a]; a*=c; a%=mod; return a; } class UnionFind { public: vector <ll> par; // 各元の親を表す配列 vector <ll> siz; // 素集合のサイズを表す配列(1 で初期化) // Constructor UnionFind(ll sz_): par(sz_), siz(sz_, 1LL) { for (ll i = 0; i < sz_; ++i) par[i] = i; // 初期では親は自分自身 } void init(ll sz_) { par.resize(sz_); siz.assign(sz_, 1LL); // resize だとなぜか初期化されなかった for (ll i = 0; i < sz_; ++i) par[i] = i; // 初期では親は自分自身 } // Member Function // Find ll root(ll x) { // 根の検索 while (par[x] != x) { x = par[x] = par[par[x]]; // x の親の親を x の親とする } return x; } // Union(Unite, Merge) bool merge(ll x, ll y) { x = root(x); y = root(y); if (x == y) return false; // merge technique(データ構造をマージするテク.小を大にくっつける) if (siz[x] < siz[y]) swap(x, y); siz[x] += siz[y]; par[y] = x; return true; } bool issame(ll x, ll y) { // 連結判定 return root(x) == root(y); } ll size(ll x) { // 素集合のサイズ return siz[root(x)]; } }; template<class Monoid, class Action> struct SegTree { using FuncMonoid = function< Monoid(Monoid, Monoid) >; using FuncAction = function< void(Monoid&, Action) >; using FuncLazy = function< void(Action&, Action) >; FuncMonoid FM; FuncAction FA; FuncLazy FL; Monoid IDENTITY_MONOID; Action IDENTITY_LAZY; int SIZE, HEIGHT; vector<Monoid> dat; vector<Action> lazy; SegTree() { } SegTree(int n, const FuncMonoid fm, const FuncAction fa, const FuncLazy fl, const Monoid &identity_monoid, const Action &identity_lazy) : FM(fm), FA(fa), FL(fl), IDENTITY_MONOID(identity_monoid), IDENTITY_LAZY(identity_lazy) { SIZE = 1, HEIGHT = 0; while (SIZE < n) SIZE <<= 1, ++HEIGHT; dat.assign(SIZE * 2, IDENTITY_MONOID); lazy.assign(SIZE * 2, IDENTITY_LAZY); } void init(int n, const FuncMonoid fm, const FuncAction fa, const FuncLazy fl, const Monoid &identity_monoid, const Action &identity_lazy) { FM = fm, FA = fa, FL = fl; IDENTITY_MONOID = identity_monoid, IDENTITY_LAZY = identity_lazy; SIZE = 1; HEIGHT = 0; while (SIZE < n) SIZE <<= 1, ++HEIGHT; dat.assign(SIZE * 2, IDENTITY_MONOID); lazy.assign(SIZE * 2, IDENTITY_LAZY); } // set, a is 0-indexed void set(int a, const Monoid &v) { dat[a + SIZE] = v; } void build() { for (int k = SIZE - 1; k > 0; --k) dat[k] = FM(dat[k*2], dat[k*2+1]); } // update [a, b) inline void evaluate(int k) { if (lazy[k] == IDENTITY_LAZY) return; if (k < SIZE) FL(lazy[k*2], lazy[k]), FL(lazy[k*2+1], lazy[k]); FA(dat[k], lazy[k]); lazy[k] = IDENTITY_LAZY; } inline void update(int a, int b, const Action &v, int k, int l, int r) { evaluate(k); if (a <= l && r <= b) FL(lazy[k], v), evaluate(k); else if (a < r && l < b) { update(a, b, v, k*2, l, (l+r)>>1); update(a, b, v, k*2+1, (l+r)>>1, r); dat[k] = FM(dat[k*2], dat[k*2+1]); } } inline void update(int a, int b, const Action &v) { update(a, b, v, 1, 0, SIZE); } // get [a, b) inline Monoid get(int a, int b, int k, int l, int r) { evaluate(k); if (a <= l && r <= b) return dat[k]; else if (a < r && l < b) return FM(get(a, b, k*2, l, (l+r)>>1), get(a, b, k*2+1, (l+r)>>1, r)); else return IDENTITY_MONOID; } inline Monoid get(int a, int b) { return get(a, b, 1, 0, SIZE); } inline Monoid operator [] (int a) { return get(a, a + 1); } // debug void print() { for (int i = 0; i < SIZE; ++i) { if (i) cout << ","; cout << (*this)[i]; } cout << endl; } }; template< typename T > struct FormalPowerSeries : vector< T > { using vector< T >::vector; using P = FormalPowerSeries; using MULT = function< P(P, P) >; using FFT = function< void(P &) >; using SQRT = function< T(T) >; static MULT &get_mult() { static MULT mult = nullptr; return mult; } static void set_mult(MULT f) { get_mult() = f; } static FFT &get_fft() { static FFT fft = nullptr; return fft; } static FFT &get_ifft() { static FFT ifft = nullptr; return ifft; } static void set_fft(FFT f, FFT g) { get_fft() = f; get_ifft() = g; } static SQRT &get_sqrt() { static SQRT sqr = nullptr; return sqr; } static void set_sqrt(SQRT sqr) { get_sqrt() = sqr; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i]; shrink(); return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; shrink(); return *this; } P &operator*=(const T &v) { const int n = (int) this->size(); for(int k = 0; k < n; k++) (*this)[k] *= v; return *this; } P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } assert(get_mult() != nullptr); return *this = get_mult()(*this, r); } P &operator%=(const P &r) { return *this -= *this / r * r; } P operator-() const { P ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P dot(P r) const { P ret(min(this->size(), r.size())); for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } P pre(int sz) const { return P(begin(*this), begin(*this) + min((int) this->size(), sz)); } P operator>>(int sz) const { if(this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } P diff() const { const int n = (int) this->size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } // F(0) must not be 0 P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; if(get_fft() != nullptr) { P ret(*this); ret.resize(deg, T(0)); return ret.inv_fast(); } P ret({T(1) / (*this)[0]}); for(int i = 1; i < deg; i <<= 1) { ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1); } return ret.pre(deg); } // F(0) must be 1 P log(int deg = -1) const { assert((*this)[0] == 1); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } P sqrt(int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) return {}; if(deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(deg - i / 2); if(ret.empty()) return {}; ret = ret << (i / 2); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return P(deg, 0); } P ret; if(get_sqrt() == nullptr) { assert((*this)[0] == T(1)); ret = {T(1)}; } else { auto sqr = get_sqrt()((*this)[0]); if(sqr * sqr != (*this)[0]) return {}; ret = {T(sqr)}; } T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } // F(0) must be 0 P exp(int deg = -1) const { assert((*this)[0] == T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; if(get_fft() != nullptr) { P ret(*this); ret.resize(deg, T(0)); return ret.exp_rec(); } P ret({T(1)}); for(int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } P online_convolution_exp(const P &conv_coeff) const { const int n = (int) conv_coeff.size(); assert((n & (n - 1)) == 0); vector< P > conv_ntt_coeff; for(int i = n; i >= 1; i >>= 1) { P g(conv_coeff.pre(i)); get_fft()(g); conv_ntt_coeff.emplace_back(g); } P conv_arg(n), conv_ret(n); auto rec = [&](auto rec, int l, int r, int d) -> void { if(r - l <= 16) { for(int i = l; i < r; i++) { T sum = 0; for(int j = l; j < i; j++) sum += conv_arg[j] * conv_coeff[i - j]; conv_ret[i] += sum; conv_arg[i] = i == 0 ? T(1) : conv_ret[i] / i; } } else { int m = (l + r) / 2; rec(rec, l, m, d + 1); P pre(r - l); for(int i = 0; i < m - l; i++) pre[i] = conv_arg[l + i]; get_fft()(pre); for(int i = 0; i < r - l; i++) pre[i] *= conv_ntt_coeff[d][i]; get_ifft()(pre); for(int i = 0; i < r - m; i++) conv_ret[m + i] += pre[m + i - l]; rec(rec, m, r, d + 1); } }; rec(rec, 0, n, 0); return conv_arg; } P exp_rec() const { assert((*this)[0] == T(0)); const int n = (int) this->size(); int m = 1; while(m < n) m *= 2; P conv_coeff(m); for(int i = 1; i < n; i++) conv_coeff[i] = (*this)[i] * i; return online_convolution_exp(conv_coeff).pre(n); } P inv_fast() const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); P res{T(1) / (*this)[0]}; for(int d = 1; d < n; d <<= 1) { P f(2 * d), g(2 * d); for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j]; for(int j = 0; j < d; j++) g[j] = res[j]; get_fft()(f); get_fft()(g); for(int j = 0; j < 2 * d; j++) f[j] *= g[j]; get_ifft()(f); for(int j = 0; j < d; j++) { f[j] = 0; f[j + d] = -f[j + d]; } get_fft()(f); for(int j = 0; j < 2 * d; j++) f[j] *= g[j]; get_ifft()(f); for(int j = 0; j < d; j++) f[j] = res[j]; res = f; } return res.pre(n); } P pow(int64_t k, int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); if(i * k > deg) return P(deg, T(0)); ret = (ret << (i * k)).pre(deg); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return *this; } T eval(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } P pow_mod(int64_t n, P mod) const { P modinv = mod.rev().inv(); auto get_div = [&](P base) { if(base.size() < mod.size()) { base.clear(); return base; } int n = base.size() - mod.size() + 1; return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n); }; P x(*this), ret{1}; while(n > 0) { if(n & 1) { ret *= x; ret -= get_div(ret) * mod; } x *= x; x -= get_div(x) * mod; n >>= 1; } return ret; } }; template< typename Mint > struct NumberTheoreticTransformFriendlyModInt { vector< int > rev; vector< Mint > rts; int base, max_base; Mint root; NumberTheoreticTransformFriendlyModInt() : base(1), rev{0, 1}, rts{0, 1} { const int mod = Mint::get_mod(); assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(root.pow((mod - 1) >> 1) == 1) root += 1; assert(root.pow(mod - 1) == 1); root = root.pow((mod - 1) >> max_base); } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { Mint z = root.pow(1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = rts[i] * z; } ++base; } } void ntt(vector< Mint > &a) { const int n = (int) a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { Mint z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } void intt(vector< Mint > &a) { const int n = (int) a.size(); ntt(a); reverse(a.begin() + 1, a.end()); Mint inv_sz = Mint(1) / n; for(int i = 0; i < n; i++) a[i] *= inv_sz; } vector< Mint > multiply(vector< Mint > a, vector< Mint > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); Mint inv_sz = Mint(1) / sz; for(int i = 0; i < sz; i++) { a[i] *= b[i] * inv_sz; } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; template< typename T > FormalPowerSeries< T > bernoulli(int N) { FormalPowerSeries< T > poly(N + 1); poly[0] = T(1); for(int i = 1; i <= N; i++) { poly[i] = poly[i - 1] / T(i + 1); } poly = poly.inv(); T tmp(1); for(int i = 1; i <= N; i++) { tmp *= T(i); poly[i] *= tmp; } return poly; } int main() { /* mod は 1e9+7 */ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(10); ll a,b,c; cin>>a>>b>>c; if(__gcd(a,__gcd(b,c))!=1){ cout<<"INF"<<endl; return 0; } bool dp[a*b+10]; for(int i=0;i<a*b+10;i++){ dp[i]=false; } dp[0]=true; ll ans=0; for(int i=1;i<a*b+10;i++){ if(i>=a){ dp[i]|=dp[i-a]; } if(i>=b){ dp[i]|=dp[i-b]; } if(i>=c){ dp[i]|=dp[i-c]; } if(!dp[i]){ ans++; } } cout<<ans<<endl; }