結果
問題 | No.886 Direct |
ユーザー |
![]() |
提出日時 | 2021-01-11 16:48:28 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 245 ms / 4,000 ms |
コード長 | 11,243 bytes |
コンパイル時間 | 2,571 ms |
コンパイル使用メモリ | 207,348 KB |
最終ジャッジ日時 | 2025-01-17 16:11:55 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 32 |
ソースコード
#include <bits/stdc++.h>using namespace std;using ll = long long;using ull = unsigned long long;using i128 = __int128_t;using pii = pair<int, int>;using pll = pair<long long, long long>;template<class T> using vec = vector<T>;template<class T> using vvec = vector<vector<T>>;#define rep(i, n) for (int i = 0; i < (n); i++)#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)#define all(x) (x).begin(), (x).end()constexpr char ln = '\n';template<class Container> inline int SZ(Container& v) { return int(v.size()); }template<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }template<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}template<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}inline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }inline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }inline int popcount(ull x) { return __builtin_popcountll(x); }inline int kthbit(ull x, int k) { return (x>>k) & 1; }inline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }struct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////O(NloglogN) で約数・倍数の畳み込み// (1) divisor_zeta : 倍数方向に高速ゼータ変換(累積和)// (2) divisor_moebius : 約数方向に高速メビウス変換(包除原理) (1)の逆// (3) multiple_zeta : 約数方向に高速ゼータ変換(累積和)// (4) multiple_moebius : 倍数方向に高速メビウス変換(包除原理) (3)の逆// メビウス関数は c[1] = 1 として(2) で求まるstruct PrimeZeta {int n_;vector<bool> sieve;PrimeZeta() {}PrimeZeta(int n) : n_(n), sieve(n+1, true) {sieve[0] = sieve[1] = false;for (int i = 2; i*i <= n; i++) {if (sieve[i]) {for (int j = i*i; j <= n; j += i) {sieve[j] = false;}}}}// (1) divisor_zeta : 倍数方向に高速ゼータ変換(累積和)template<class T>void divisor_zeta(T &c) {int n = int(c.size());assert(n-1 <= n_);for (int i = 2; i < n; i++) {if (sieve[i]) {for (int j = 1; j*i < n; j++) {c[j*i] += c[j];}}}}// (2) divisor_moebius : 約数方向に高速メビウス変換(包除原理) (1)の逆template<class T>void divisor_moebius(T &c) {int n = int(c.size());assert(n-1 <= n_);for (int i = 2; i < n; i++) {if (sieve[i]) {for (int j = (n-1)/i; j >= 1; j--) {c[j*i] -= c[j];}}}}// (3) multiple_zeta : 約数方向に高速ゼータ変換(累積和)template<class T>void multiple_zeta(T &c) {int n = int(c.size());assert(n-1 <= n_);for (int i = 2; i < n; i++) {if (sieve[i]) {for (int j = (n-1)/i; j >= 1; j--) {c[j] += c[j*i];}}}}// (4) multiple_moebius : 倍数方向に高速メビウス変換(包除原理) (3)の逆template<class T>void multiple_moebius(T &c) {int n = int(c.size());assert(n-1 <= n_);for (int i = 2; i < n; i++) {if (sieve[i]) {for (int j = 1; j*i < n; j++) {c[j] -= c[j*i];}}}}};//////////////////////////////////////////////////////////////////////////////////////////////////////template<int m>struct ModInt {public:static constexpr int mod() { return m; }static ModInt raw(int v) {ModInt x;x._v = v;return x;}ModInt() : _v(0) {}ModInt(long long v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}unsigned int val() const { return _v; }ModInt& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}ModInt& operator--() {if (_v == 0) _v = umod();_v--;return *this;}ModInt operator++(int) {ModInt result = *this;++*this;return result;}ModInt operator--(int) {ModInt result = *this;--*this;return result;}ModInt& operator+=(const ModInt& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}ModInt& operator-=(const ModInt& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}ModInt& operator*=(const ModInt& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}ModInt& operator^=(long long n) {ModInt x = *this;*this = 1;if (n < 0) x = x.inv(), n = -n;while (n) {if (n & 1) *this *= x;x *= x;n >>= 1;}return *this;}ModInt& operator/=(const ModInt& rhs) { return *this = *this * rhs.inv(); }ModInt operator+() const { return *this; }ModInt operator-() const { return ModInt() - *this; }ModInt pow(long long n) const {ModInt r = *this;r ^= n;return r;}ModInt inv() const {int a = _v, b = umod(), y = 1, z = 0, t;for (; ; ) {t = a / b; a -= t * b;if (a == 0) {assert(b == 1 || b == -1);return ModInt(b * z);}y -= t * z;t = b / a; b -= t * a;if (b == 0) {assert(a == 1 || a == -1);return ModInt(a * y);}z -= t * y;}}friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) += rhs; }friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) -= rhs; }friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) *= rhs; }friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) /= rhs; }friend ModInt operator^(const ModInt& lhs, long long rhs) { return ModInt(lhs) ^= rhs; }friend bool operator==(const ModInt& lhs, const ModInt& rhs) { return lhs._v == rhs._v; }friend bool operator!=(const ModInt& lhs, const ModInt& rhs) { return lhs._v != rhs._v; }friend ModInt operator+(long long lhs, const ModInt& rhs) { return (ModInt(lhs) += rhs); }friend ModInt operator-(long long lhs, const ModInt& rhs) { return (ModInt(lhs) -= rhs); }friend ModInt operator*(long long lhs, const ModInt& rhs) { return (ModInt(lhs) *= rhs); }friend ostream& operator<<(ostream& os, const ModInt& M) { return os << M._v; }friend istream& operator>>(istream& is, ModInt& M) {long long x; is >> x;M = ModInt(x);return is;}private:unsigned int _v;static constexpr unsigned int umod() { return m; }};constexpr int MOD = 1000000007;//constexpr int MOD = 998244353;using mint = ModInt<MOD>;struct ModCombination {private:int max_n;vector<mint> fac_,facinv_;public:ModCombination() {}ModCombination(int n) : max_n(n), fac_(n+1), facinv_(n+1) {assert(1 <= n);fac_[0] = 1;for (int i = 1; i <= n; i++) fac_[i] = fac_[i-1]*i;facinv_[n] = fac_[n].inv();for (int i = n; i >= 1; i--) facinv_[i-1] = facinv_[i]*i;}mint fac(int k) const {assert(0 <= k and k <= max_n);return fac_[k];}mint facinv(int k) const {assert(0 <= k and k <= max_n);return facinv_[k];}mint invs(int k) const {assert(1 <= k and k <= max_n);return facinv_[k]*fac_[k-1];}mint P(int n, int k) const {if (k < 0 or k > n) return mint(0);assert(n <= max_n);return fac_[n]*facinv_[n-k];}mint C(int n, int k) const {if (k < 0 or k > n) return mint(0);assert(n <= max_n);return fac_[n]*facinv_[n-k]*facinv_[k];}mint H(int n, int k) const {if (n == 0 and k == 0) return mint(1);return C(n+k-1,k);}mint catalan(int n) const {if (n == 0) return mint(1);return C(n*2,n) - C(n*2,n-1);}};//O(NloglogN)struct PrimeFactorTable {int n;vector<int> table;PrimeFactorTable() {}PrimeFactorTable(int n_) : n(n_), table(n_+1) {iota(table.begin(),table.end(),0);for (int i = 2; i*i <= n; i++) {if (table[i] == i) {for (int j = i*i; j <= n; j += i) {if (table[j] == j) table[j] = i;}}}}int operator[](int x) const { return table[x]; }vector<pair<int, int>> prime_factor(int x) {assert(1 <= x and x <= n);vector<pair<int, int>> ret;while (x != 1) {if (ret.empty() or ret.back().first != table[x]) {ret.emplace_back(table[x],1);} else {ret.back().second++;}x /= table[x];}return ret;}};void yukico886() {int H,W; cin >> H >> W;const int MAX = 3e6;PrimeZeta zet(MAX);vec<mint> cnt(MAX+1);for (int i = 1; i < H; i++) {cnt[i] = H-i;}zet.multiple_zeta(cnt);vec<mint> e(MAX+1);e[1] = 1;zet.divisor_moebius(e);rep(i,MAX+1) {cnt[i] *= e[i];}zet.divisor_zeta(cnt);mint ans = 0;for (int i = 1; i < W; i++) {ans += cnt[i]*(W-i);}ans *= 2;ans += mint(H)*(W-1) + mint(W)*(H-1);cout << ans << ln;}void CF325E() {const int MAX = 1e7;PrimeFactorTable PFT(MAX);PrimeZeta PZ(MAX);int N; cin >> N;vec<int> A(N),divs(MAX+1);rep(i,N) {cin >> A[i];divs[A[i]]++;}vec<mint> beki(N+1,1);rep(i,N) beki[i+1] = beki[i]*2;PZ.multiple_zeta(divs);vec<mint> S(MAX+1);rep(i,MAX+1) S[i] = beki[divs[i]] - 1;PZ.multiple_moebius(S);S[1] = 0;PZ.multiple_zeta(S);mint ans = 0;rep(i,N) {auto primes = PFT.prime_factor(A[i]);int K = primes.size();mint tmp = 0;rep(mask,1<<K) {int val = 1;rep(k,K) {if (kthbit(mask,k)) val *= primes[k].first;}if (popcount(mask)&1) tmp -= S[val];else tmp += S[val];}ans += tmp;}cout << ans << ln;}int main() {yukico886();//CF325E();}/*verified on 2021/01/11https://yukicoder.me/problems/no/886*/