結果

問題 No.886 Direct
ユーザー minato
提出日時 2021-01-11 16:48:28
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 245 ms / 4,000 ms
コード長 11,243 bytes
コンパイル時間 2,571 ms
コンパイル使用メモリ 207,348 KB
最終ジャッジ日時 2025-01-17 16:11:55
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
template<class T> using vec = vector<T>;
template<class T> using vvec = vector<vector<T>>;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)
#define all(x) (x).begin(), (x).end()
constexpr char ln = '\n';
template<class Container> inline int SZ(Container& v) { return int(v.size()); }
template<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }
template<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}
template<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}
inline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }
inline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }
inline int popcount(ull x) { return __builtin_popcountll(x); }
inline int kthbit(ull x, int k) { return (x>>k) & 1; }
inline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }
struct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//O(NloglogN)
// (1) divisor_zeta : ()
// (2) divisor_moebius : () (1)
// (3) multiple_zeta : ()
// (4) multiple_moebius : () (3)
// c[1] = 1 (2)
struct PrimeZeta {
int n_;
vector<bool> sieve;
PrimeZeta() {}
PrimeZeta(int n) : n_(n), sieve(n+1, true) {
sieve[0] = sieve[1] = false;
for (int i = 2; i*i <= n; i++) {
if (sieve[i]) {
for (int j = i*i; j <= n; j += i) {
sieve[j] = false;
}
}
}
}
// (1) divisor_zeta : ()
template<class T>
void divisor_zeta(T &c) {
int n = int(c.size());
assert(n-1 <= n_);
for (int i = 2; i < n; i++) {
if (sieve[i]) {
for (int j = 1; j*i < n; j++) {
c[j*i] += c[j];
}
}
}
}
// (2) divisor_moebius : () (1)
template<class T>
void divisor_moebius(T &c) {
int n = int(c.size());
assert(n-1 <= n_);
for (int i = 2; i < n; i++) {
if (sieve[i]) {
for (int j = (n-1)/i; j >= 1; j--) {
c[j*i] -= c[j];
}
}
}
}
// (3) multiple_zeta : ()
template<class T>
void multiple_zeta(T &c) {
int n = int(c.size());
assert(n-1 <= n_);
for (int i = 2; i < n; i++) {
if (sieve[i]) {
for (int j = (n-1)/i; j >= 1; j--) {
c[j] += c[j*i];
}
}
}
}
// (4) multiple_moebius : () (3)
template<class T>
void multiple_moebius(T &c) {
int n = int(c.size());
assert(n-1 <= n_);
for (int i = 2; i < n; i++) {
if (sieve[i]) {
for (int j = 1; j*i < n; j++) {
c[j] -= c[j*i];
}
}
}
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<int m>
struct ModInt {
public:
static constexpr int mod() { return m; }
static ModInt raw(int v) {
ModInt x;
x._v = v;
return x;
}
ModInt() : _v(0) {}
ModInt(long long v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
unsigned int val() const { return _v; }
ModInt& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
ModInt& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
ModInt operator++(int) {
ModInt result = *this;
++*this;
return result;
}
ModInt operator--(int) {
ModInt result = *this;
--*this;
return result;
}
ModInt& operator+=(const ModInt& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
ModInt& operator-=(const ModInt& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
ModInt& operator*=(const ModInt& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
ModInt& operator^=(long long n) {
ModInt x = *this;
*this = 1;
if (n < 0) x = x.inv(), n = -n;
while (n) {
if (n & 1) *this *= x;
x *= x;
n >>= 1;
}
return *this;
}
ModInt& operator/=(const ModInt& rhs) { return *this = *this * rhs.inv(); }
ModInt operator+() const { return *this; }
ModInt operator-() const { return ModInt() - *this; }
ModInt pow(long long n) const {
ModInt r = *this;
r ^= n;
return r;
}
ModInt inv() const {
int a = _v, b = umod(), y = 1, z = 0, t;
for (; ; ) {
t = a / b; a -= t * b;
if (a == 0) {
assert(b == 1 || b == -1);
return ModInt(b * z);
}
y -= t * z;
t = b / a; b -= t * a;
if (b == 0) {
assert(a == 1 || a == -1);
return ModInt(a * y);
}
z -= t * y;
}
}
friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) += rhs; }
friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) -= rhs; }
friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) *= rhs; }
friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) /= rhs; }
friend ModInt operator^(const ModInt& lhs, long long rhs) { return ModInt(lhs) ^= rhs; }
friend bool operator==(const ModInt& lhs, const ModInt& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const ModInt& lhs, const ModInt& rhs) { return lhs._v != rhs._v; }
friend ModInt operator+(long long lhs, const ModInt& rhs) { return (ModInt(lhs) += rhs); }
friend ModInt operator-(long long lhs, const ModInt& rhs) { return (ModInt(lhs) -= rhs); }
friend ModInt operator*(long long lhs, const ModInt& rhs) { return (ModInt(lhs) *= rhs); }
friend ostream& operator<<(ostream& os, const ModInt& M) { return os << M._v; }
friend istream& operator>>(istream& is, ModInt& M) {
long long x; is >> x;
M = ModInt(x);
return is;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
};
constexpr int MOD = 1000000007;
//constexpr int MOD = 998244353;
using mint = ModInt<MOD>;
struct ModCombination {
private:
int max_n;
vector<mint> fac_,facinv_;
public:
ModCombination() {}
ModCombination(int n) : max_n(n), fac_(n+1), facinv_(n+1) {
assert(1 <= n);
fac_[0] = 1;
for (int i = 1; i <= n; i++) fac_[i] = fac_[i-1]*i;
facinv_[n] = fac_[n].inv();
for (int i = n; i >= 1; i--) facinv_[i-1] = facinv_[i]*i;
}
mint fac(int k) const {
assert(0 <= k and k <= max_n);
return fac_[k];
}
mint facinv(int k) const {
assert(0 <= k and k <= max_n);
return facinv_[k];
}
mint invs(int k) const {
assert(1 <= k and k <= max_n);
return facinv_[k]*fac_[k-1];
}
mint P(int n, int k) const {
if (k < 0 or k > n) return mint(0);
assert(n <= max_n);
return fac_[n]*facinv_[n-k];
}
mint C(int n, int k) const {
if (k < 0 or k > n) return mint(0);
assert(n <= max_n);
return fac_[n]*facinv_[n-k]*facinv_[k];
}
mint H(int n, int k) const {
if (n == 0 and k == 0) return mint(1);
return C(n+k-1,k);
}
mint catalan(int n) const {
if (n == 0) return mint(1);
return C(n*2,n) - C(n*2,n-1);
}
};
//O(NloglogN)
struct PrimeFactorTable {
int n;
vector<int> table;
PrimeFactorTable() {}
PrimeFactorTable(int n_) : n(n_), table(n_+1) {
iota(table.begin(),table.end(),0);
for (int i = 2; i*i <= n; i++) {
if (table[i] == i) {
for (int j = i*i; j <= n; j += i) {
if (table[j] == j) table[j] = i;
}
}
}
}
int operator[](int x) const { return table[x]; }
vector<pair<int, int>> prime_factor(int x) {
assert(1 <= x and x <= n);
vector<pair<int, int>> ret;
while (x != 1) {
if (ret.empty() or ret.back().first != table[x]) {
ret.emplace_back(table[x],1);
} else {
ret.back().second++;
}
x /= table[x];
}
return ret;
}
};
void yukico886() {
int H,W; cin >> H >> W;
const int MAX = 3e6;
PrimeZeta zet(MAX);
vec<mint> cnt(MAX+1);
for (int i = 1; i < H; i++) {
cnt[i] = H-i;
}
zet.multiple_zeta(cnt);
vec<mint> e(MAX+1);
e[1] = 1;
zet.divisor_moebius(e);
rep(i,MAX+1) {
cnt[i] *= e[i];
}
zet.divisor_zeta(cnt);
mint ans = 0;
for (int i = 1; i < W; i++) {
ans += cnt[i]*(W-i);
}
ans *= 2;
ans += mint(H)*(W-1) + mint(W)*(H-1);
cout << ans << ln;
}
void CF325E() {
const int MAX = 1e7;
PrimeFactorTable PFT(MAX);
PrimeZeta PZ(MAX);
int N; cin >> N;
vec<int> A(N),divs(MAX+1);
rep(i,N) {
cin >> A[i];
divs[A[i]]++;
}
vec<mint> beki(N+1,1);
rep(i,N) beki[i+1] = beki[i]*2;
PZ.multiple_zeta(divs);
vec<mint> S(MAX+1);
rep(i,MAX+1) S[i] = beki[divs[i]] - 1;
PZ.multiple_moebius(S);
S[1] = 0;
PZ.multiple_zeta(S);
mint ans = 0;
rep(i,N) {
auto primes = PFT.prime_factor(A[i]);
int K = primes.size();
mint tmp = 0;
rep(mask,1<<K) {
int val = 1;
rep(k,K) {
if (kthbit(mask,k)) val *= primes[k].first;
}
if (popcount(mask)&1) tmp -= S[val];
else tmp += S[val];
}
ans += tmp;
}
cout << ans << ln;
}
int main() {
yukico886();
//CF325E();
}
/*
verified on 2021/01/11
https://yukicoder.me/problems/no/886
*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0