結果
問題 | No.1338 Giant Class |
ユーザー |
![]() |
提出日時 | 2021-01-15 21:35:47 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 8,355 bytes |
コンパイル時間 | 820 ms |
コンパイル使用メモリ | 82,036 KB |
最終ジャッジ日時 | 2024-11-14 23:58:22 |
合計ジャッジ時間 | 2,494 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:213:19: error: 'numeric_limits' was not declared in this scope 213 | const T INF = numeric_limits<T>::max(); | ^~~~~~~~~~~~~~ main.cpp:213:35: error: expected primary-expression before '>' token 213 | const T INF = numeric_limits<T>::max(); | ^ main.cpp:213:41: error: too few arguments to function 'long long int max(long long int, long long int)' 213 | const T INF = numeric_limits<T>::max(); | ~~~~~^~ main.cpp:83:5: note: declared here 83 | int max(int a, int b) { | ^~~ main.cpp: In function 'long long int keta(long long int)': main.cpp:40:1: warning: control reaches end of non-void function [-Wreturn-type] 40 | } | ^ main.cpp: In function 'long long int gcd(long long int, long long int)': main.cpp:54:1: warning: control reaches end of non-void function [-Wreturn-type] 54 | } | ^ main.cpp: In function 'long long int lcm(long long int, long long int)': main.cpp:67:1: warning: control reaches end of non-void function [-Wreturn-type] 67 | } | ^
ソースコード
#include<iostream>#include<algorithm>#include<cmath>#include<map>#include<stdio.h>#include<vector>#include<queue>#include<math.h>#include<deque>#include<set>#include<bitset>using namespace std;#define double long double#define int long long#define rep(s,i,n) for(int i=s;i<n;i++)#define c(n) cout<<n<<endl;#define ic(n) int n;cin>>n;#define sc(s) string s;cin>>s;#define dc(d) double d;cin>>d;#define mod 1000000007#define inf 1000000000000000007#define f first#define s second#define mini(c,a,b) *min_element(c+a,c+b)#define maxi(c,a,b) *max_element(c+a,c+b)#define pi 3.141592653589793238462643383279#define e_ 2.718281828459045235360287471352#define P pair<int,int>#define upp(a,n,x) upper_bound(a,a+n,x)-a;#define low(a,n,x) lower_bound(a,a+n,x)-a;#define pb push_back//printf("%.12Lf\n",);int keta(int x) {rep(0, i, 30) {if (x < 10) {return i + 1;}x = x / 10;}}int gcd(int x, int y) {if (x == 0 || y == 0)return x + y;int aa = x, bb = y;rep(0, i, 1000) {aa = aa % bb;if (aa == 0) {return bb;}bb = bb % aa;if (bb == 0) {return aa;}}}int lcm(int x, int y) {int aa = x, bb = y;rep(0, i, 1000) {aa = aa % bb;if (aa == 0) {return x / bb * y;}bb = bb % aa;if (bb == 0) {return x / aa * y;}}}int integer(double d){return long(d);}int distance(double a,double b,double c,double d){return sqrt((b-a)*(b-a)+(c-d)*(c-d));}bool prime(int x) {if (x == 1)return false;rep(2, i, sqrt(x) + 1) {if (x % i == 0 && x != i) {return false;}}return true;}int max(int a, int b) {if (a >= b)return a;else return b;}string maxst(string s, string t) {int n = s.size();int m = t.size();if (n > m)return s;else if (n < m)return t;else {rep(0, i, n) {if (s[i] > t[i])return s;if (s[i] < t[i])return t;}return s;}}int min(int a, int b) {if (a >= b)return b;else return a;}string string_reverse(string s){int n=s.size();string t;rep(0,i,n)t+=s[n-i-1];return t;}int newcom(int n,int y){int bunsi = 1, bunbo = 1;rep(0, i, y){bunsi = (bunsi * (n - i)) ;bunbo = (bunbo * (i + 1)) ;int k=gcd(bunsi,bunbo);bunsi/=k;bunbo/=k;}return bunsi/bunbo;}int yakuwa(int n) {int sum = 0;rep(1, i, sqrt(n + 1)) {if (n % i == 0)sum += i + n / i;if (i * i == n)sum -= i;}return sum;}int poow(int n,int m){int pro=1;int nn=n;while(m){if(m%2==1)pro=pro*nn%mod;m=m/2;nn=nn*nn%mod;}return pro;}int inv(int n,int m){int t=poow(m,mod-2)%mod;return n*t%mod;}int com(int n,int m){int bunsi=1,bunbo=1;for(int i=n-m+1;i<=n;i++)bunsi=bunsi*i%mod;for(int i=1;i<=m;i++)bunbo=bunbo*i%mod;return inv(bunsi,bunbo);}int minpow(int x, int y) {int sum = 1;rep(0, i, y)sum *= x;return sum;}int ketawa(int x, int sinsuu) {int sum = 0;rep(0, i, 100)sum += (x % minpow(sinsuu, i + 1)) / (minpow(sinsuu, i));return sum;}int sankaku(int a) {if(a%2==0) return a /2*(a+1);else return (a+1)/2*a;}int sames(int a[1111111], int n) {int ans = 0;rep(0, i, n) {if (a[i] == a[i + 1]) {int j = i;while (a[j + 1] == a[i] && j <= n - 2)j++;ans += sankaku(j - i);i = j;}}return ans;}using Graph = vector<vector<int>>;int oya[214514];int depth[214514];void dfs(const Graph& G, int v, int p, int d) {depth[v] = d;oya[v] = p;for (auto nv : G[v]) {if (nv == p) continue; // nv が親 p だったらダメdfs(G, nv, v, d + 1); // d を 1 増やして子ノードへ}}struct UnionFind {vector<int> par; // par[i]:iの親の番号 (例) par[3] = 2 : 3の親が2UnionFind(int N) : par(N) { //最初は全てが根であるとして初期化for (int i = 0; i < N; i++) par[i] = i;}int root(int x) { // データxが属する木の根を再帰で得る:root(x) = {xの木の根}if (par[x] == x) return x;return par[x] = root(par[x]);}void unite(int x, int y) { // xとyの木を併合int rx = root(x); //xの根をrxint ry = root(y); //yの根をryif (rx == ry) return; //xとyの根が同じ(=同じ木にある)時はそのままpar[rx] = ry; //xとyの根が同じでない(=同じ木にない)時:xの根rxをyの根ryにつける}bool same(int x, int y) { // 2つのデータx, yが属する木が同じならtrueを返すint rx = root(x);int ry = root(y);return rx == ry;}};template <typename T>struct RMQ {const T INF = numeric_limits<T>::max();int n;vector<T> dat, lazy;RMQ(int n_) : n(), dat(n_ * 4, INF), lazy(n_ * 4, INF) {int x = 1;while (n_ > x) x *= 2;n = x;}/* lazy eval */void eval(int k) {if (lazy[k] == INF) return; // 更新するものが無ければ終了if (k < n - 1) { // 葉でなければ子に伝搬lazy[k * 2 + 1] = min(dat[k],lazy[k]);lazy[k * 2 + 2] = min(dat[k],lazy[k]);}// 自身を更新dat[k] = min(dat[k],lazy[k]);lazy[k] = INF;}void update(int a, int b, T x, int k, int l, int r) {eval(k);if (a <= l && r <= b) { // 完全に内側の時lazy[k] = x;eval(k);} else if (a < r && l < b) { // 一部区間が被る時update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子dat[k] = min(dat[k * 2 + 1], dat[k * 2 + 2]);}}void update(int a, int b, T x) { update(a, b, x, 0, 0, n); }T query_sub(int a, int b, int k, int l, int r) {eval(k);if (r <= a || b <= l) { // 完全に外側の時return INF;} else if (a <= l && r <= b) { // 完全に内側の時return dat[k];} else { // 一部区間が被る時T vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2);T vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r);return min(vl, vr);}}T query(int a, int b) { return query_sub(a, b, 0, 0, n); }/* debug */inline T operator[](int a) { return query(a, a + 1); }void print() {for (int i = 0; i < 2 * n - 1; ++i) {cout << (*this)[i];if (i != n) cout << ",";}cout << endl;}T max_v[1114514], smax_v[1114514];T sum[1114514], max_c[1114514];void update_node_max(int k, T x) {sum[k] += (x - max_v[k]) * max_c[k];max_v[k] = x;}void push(int k) {if(max_v[k] < max_v[2*k+1]) {update_node_max(2*k+1, max_v[k]);}if(max_v[k] < max_v[2*k+2]) {update_node_max(2*k+2, max_v[k]);}}void update(int k) {sum[k] = sum[2*k+1] + sum[2*k+2];if(max_v[2*k+1] < max_v[2*k+2]) {max_v[k] = max_v[2*k+2];max_c[k] = max_c[2*k+2];smax_v[k] = max(max_v[2*k+1], smax_v[2*k+2]);} else if(max_v[2*k+1] > max_v[2*k+2]) {max_v[k] = max_v[2*k+1];max_c[k] = max_c[2*k+1];smax_v[k] = max(smax_v[2*k+1], max_v[2*k+2]);} else {max_v[k] = max_v[2*k+1];max_c[k] = max_c[2*k+1] + max_c[2*k+2];smax_v[k] = max(smax_v[2*k+1], smax_v[2*k+2]);}}void _update_min(T x, int a, int b, int k, int l, int r) {if(b <= l || r <= a || max_v[k] <= x) {return;}if(a <= l && r <= b && smax_v[k] < x) {update_node_max(k, x);return;}push(k);_update_min(x, a, b, 2*k+1, l, (l+r)/2);_update_min(x, a, b, 2*k+2, (l+r)/2, r);update(k);}T _query_max(int a, int b, int k, int l, int r) {if(b <= l || r <= a) {return 0;}if(a <= l && r <= b) {return max_v[k];}push(k);T lv = _query_max(a, b, 2*k+1, l, (l+r)/2);T rv = _query_max(a, b, 2*k+2, (l+r)/2, r);return max(lv, rv);}T _query_sum(int a, int b, int k, int l, int r) {if(b <= l || r <= a) {return 0;}if(a <= l && r <= b) {return sum[k];}push(k);T lv = _query_sum(a, b, 2*k+1, l, (l+r)/2);T rv = _query_sum(a, b, 2*k+2, (l+r)/2, r);return lv + rv;}};map<int,int> ma;signed main(){ic(w) ic(h) ic(q)int ans=h*w;while(q){q-=1;ic(x) ic(y)ans-=max(0,(w-x+1)-ma[y]);ma[y]=max(ma[y],w-x+1);c(ans)}}