結果
問題 | No.1339 循環小数 |
ユーザー | chineristAC |
提出日時 | 2021-01-15 21:40:18 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 93 ms / 2,000 ms |
コード長 | 2,787 bytes |
コンパイル時間 | 192 ms |
コンパイル使用メモリ | 81,664 KB |
実行使用メモリ | 77,028 KB |
最終ジャッジ日時 | 2024-05-04 23:04:23 |
合計ジャッジ時間 | 4,015 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
54,272 KB |
testcase_01 | AC | 50 ms
61,824 KB |
testcase_02 | AC | 55 ms
62,464 KB |
testcase_03 | AC | 51 ms
62,208 KB |
testcase_04 | AC | 50 ms
62,464 KB |
testcase_05 | AC | 51 ms
62,080 KB |
testcase_06 | AC | 50 ms
61,568 KB |
testcase_07 | AC | 51 ms
62,208 KB |
testcase_08 | AC | 52 ms
62,464 KB |
testcase_09 | AC | 51 ms
61,952 KB |
testcase_10 | AC | 51 ms
62,464 KB |
testcase_11 | AC | 56 ms
64,256 KB |
testcase_12 | AC | 56 ms
64,512 KB |
testcase_13 | AC | 56 ms
65,024 KB |
testcase_14 | AC | 56 ms
65,024 KB |
testcase_15 | AC | 56 ms
64,640 KB |
testcase_16 | AC | 56 ms
64,768 KB |
testcase_17 | AC | 57 ms
64,896 KB |
testcase_18 | AC | 56 ms
64,768 KB |
testcase_19 | AC | 56 ms
65,024 KB |
testcase_20 | AC | 57 ms
64,768 KB |
testcase_21 | AC | 70 ms
71,040 KB |
testcase_22 | AC | 74 ms
72,576 KB |
testcase_23 | AC | 70 ms
71,680 KB |
testcase_24 | AC | 72 ms
71,808 KB |
testcase_25 | AC | 71 ms
72,704 KB |
testcase_26 | AC | 72 ms
71,680 KB |
testcase_27 | AC | 75 ms
72,832 KB |
testcase_28 | AC | 74 ms
72,448 KB |
testcase_29 | AC | 71 ms
70,784 KB |
testcase_30 | AC | 71 ms
70,784 KB |
testcase_31 | AC | 91 ms
76,928 KB |
testcase_32 | AC | 93 ms
77,028 KB |
testcase_33 | AC | 76 ms
73,728 KB |
testcase_34 | AC | 69 ms
69,888 KB |
testcase_35 | AC | 70 ms
68,608 KB |
testcase_36 | AC | 71 ms
71,296 KB |
ソースコード
import sys from math import gcd input = sys.stdin.readline def euler_phi(n): res = n for x in range(2, int(n**.5)+1): if n % x == 0: res = res // x * (x-1) while n % x == 0: n //= x if n!=1: res = (res//n) * (n-1) return res def ind(b,n): res=0 while n%b==0: res+=1 n//=b return res def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(n): prime = primeFactor(n) res = [1] for p in prime: new = [] for a in res: for j in range(prime[p]+1): new.append(a*p**j) res = new return res ans = [] import random for _ in range(int(input())): N = int(input()) while N%2==0: N //= 2 while N%5==0: N //= 5 primef = primeFactor(N) phi = N for p in primef: phi *= (p-1) phi //= p divi = divisors(phi) #print(divi) for d in divi: if pow(10,d,N)==1: ans.append(d) break if N==1: ans.append(1) print(*ans,sep="\n")