結果
問題 | No.1339 循環小数 |
ユーザー | kozy |
提出日時 | 2021-01-15 21:43:16 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 92 ms / 2,000 ms |
コード長 | 2,644 bytes |
コンパイル時間 | 220 ms |
コンパイル使用メモリ | 81,948 KB |
実行使用メモリ | 75,880 KB |
最終ジャッジ日時 | 2024-11-26 13:49:29 |
合計ジャッジ時間 | 3,499 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 36 |
ソースコード
def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def yakusu(N): c=primeFactor(N) A=list(c.keys()) B=list(c.values()) S=len(A) cou=1 for i in B: cou*=(i+1) yakusulist=[1]*cou for i in range(cou): a=i for j in range(S): yakusulist[i]*=pow(A[j],a%(B[j]+1)) a//=(B[j]+1) yakusulist.sort() return yakusulist T=int(input()) for i in range(T): N=int(input()) ans=0 while True: if N%2==0: N//=2 else: break while True: if N%5==0: N//=5 else: break c=primeFactor(N) L=list(c.keys()) K=N if K==1: print(1) continue for i in L: N//=i N*=(i-1) flag=True for i in yakusu(N): if pow(10,i,K)==1: if flag: print(i) flag=False